Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD

INTRODUCTION: Quantitative computed tomography (qCT) is an emergent technique for diagnostics and research in patients with chronic obstructive pulmonary disease (COPD). qCT parameters demonstrate a correlation with pulmonary function tests and symptoms. However, qCT only provides anatomical, not fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gawlitza, Joshua Felix Michael (VerfasserIn) , Sturm, Timo (VerfasserIn) , Spohrer, Kai (VerfasserIn) , Henzler, Thomas (VerfasserIn) , Akın, Ibrahim (VerfasserIn) , Schönberg, Stefan (VerfasserIn) , Borggrefe, Martin (VerfasserIn) , Haubenreisser, Holger (VerfasserIn) , Trinkmann, Frederik (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 March 2019
In: Diagnostics
Year: 2019, Jahrgang: 9, Heft: 1
ISSN:2075-4418
DOI:10.3390/diagnostics9010033
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.3390/diagnostics9010033
Volltext
Verfasserangaben:Joshua Gawlitza, Timo Sturm, Kai Spohrer, Thomas Henzler, Ibrahim Akin, Stefan Schönberg, Martin Borggrefe, Holger Haubenreisser and Frederik Trinkmann

MARC

LEADER 00000caa a2200000 c 4500
001 1667303198
003 DE-627
005 20230427164429.0
007 cr uuu---uuuuu
008 190612s2019 xx |||||o 00| ||eng c
024 7 |a 10.3390/diagnostics9010033  |2 doi 
035 |a (DE-627)1667303198 
035 |a (DE-599)KXP1667303198 
035 |a (OCoLC)1341227711 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Gawlitza, Joshua Felix Michael  |d 1993-  |e VerfasserIn  |0 (DE-588)1177310546  |0 (DE-627)1048680738  |0 (DE-576)517384078  |4 aut 
245 1 0 |a Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD  |c Joshua Gawlitza, Timo Sturm, Kai Spohrer, Thomas Henzler, Ibrahim Akin, Stefan Schönberg, Martin Borggrefe, Holger Haubenreisser and Frederik Trinkmann 
264 1 |c 21 March 2019 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.06.2019 
520 |a INTRODUCTION: Quantitative computed tomography (qCT) is an emergent technique for diagnostics and research in patients with chronic obstructive pulmonary disease (COPD). qCT parameters demonstrate a correlation with pulmonary function tests and symptoms. However, qCT only provides anatomical, not functional, information. We evaluated five distinct, partial-machine learning-based mathematical models to predict lung function parameters from qCT values in comparison with pulmonary function tests. - METHODS: 75 patients with diagnosed COPD underwent body plethysmography and a dose-optimized qCT examination on a third-generation, dual-source CT with inspiration and expiration. Delta values (inspiration-expiration) were calculated afterwards. Four parameters were quantified: mean lung density, lung volume low-attenuated volume, and full width at half maximum. Five models were evaluated for best prediction: average prediction, median prediction, k-nearest neighbours (kNN), gradient boosting, and multilayer perceptron. - RESULTS: The lowest mean relative error (MRE) was calculated for the kNN model with 16%. Similar low MREs were found for polynomial regression as well as gradient boosting-based prediction. Other models led to higher MREs and thereby worse predictive performance. Beyond the sole MRE, distinct differences in prediction performance, dependent on the initial dataset (expiration, inspiration, delta), were found. - CONCLUSION: Different, partially machine learning-based models allow the prediction of lung function values from static qCT parameters within a reasonable margin of error. Therefore, qCT parameters may contain more information than we currently utilize and can potentially augment standard functional lung testing. 
650 4 |a chronic obstructive pulmonary disease 
650 4 |a machine learning 
650 4 |a thorax 
700 1 |a Sturm, Timo  |e VerfasserIn  |4 aut 
700 1 |a Spohrer, Kai  |e VerfasserIn  |4 aut 
700 1 |a Henzler, Thomas  |d 1980-  |e VerfasserIn  |0 (DE-588)134001486  |0 (DE-627)559468415  |0 (DE-576)276829948  |4 aut 
700 1 |a Akın, Ibrahim  |d 1978-  |e VerfasserIn  |0 (DE-588)132322293  |0 (DE-627)521039010  |0 (DE-576)299074366  |4 aut 
700 1 |a Schönberg, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)131557912  |0 (DE-627)510700624  |0 (DE-576)298584891  |4 aut 
700 1 |a Borggrefe, Martin  |e VerfasserIn  |0 (DE-588)1025920546  |0 (DE-627)725574232  |0 (DE-576)370913426  |4 aut 
700 1 |a Haubenreisser, Holger  |d 1985-  |e VerfasserIn  |0 (DE-588)1050055322  |0 (DE-627)783257791  |0 (DE-576)404356281  |4 aut 
700 1 |a Trinkmann, Frederik  |d 1983-  |e VerfasserIn  |0 (DE-588)142731773  |0 (DE-627)704298066  |0 (DE-576)332907406  |4 aut 
773 0 8 |i Enthalten in  |t Diagnostics  |d Basel : MDPI, 2011  |g 9(2019,1) Artikel-Nummer 33, 13 Seiten  |h Online-Ressource  |w (DE-627)718627814  |w (DE-600)2662336-5  |w (DE-576)365413917  |x 2075-4418  |7 nnas  |a Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD 
773 1 8 |g volume:9  |g year:2019  |g number:1  |g extent:13  |a Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD 
856 4 0 |u http://dx.doi.org/10.3390/diagnostics9010033  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190612 
993 |a Article 
994 |a 2019 
998 |g 142731773  |a Trinkmann, Frederik  |m 142731773:Trinkmann, Frederik  |d 910000  |d 950000  |d 950900  |d 60000  |d 61000  |e 910000PT142731773  |e 950000PT142731773  |e 950900PT142731773  |e 60000PT142731773  |e 61000PT142731773  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |k 0/60000/  |k 1/60000/61000/  |p 9  |y j 
998 |g 1050055322  |a Haubenreisser, Holger  |m 1050055322:Haubenreisser, Holger  |p 8 
998 |g 1025920546  |a Borggrefe, Martin  |m 1025920546:Borggrefe, Martin  |d 60000  |d 61000  |e 60000PB1025920546  |e 61000PB1025920546  |k 0/60000/  |k 1/60000/61000/  |p 7 
998 |g 131557912  |a Schönberg, Stefan  |m 131557912:Schönberg, Stefan  |d 60000  |d 62900  |e 60000PS131557912  |e 62900PS131557912  |k 0/60000/  |k 1/60000/62900/  |p 6 
998 |g 132322293  |a Akın, Ibrahim  |m 132322293:Akın, Ibrahim  |d 60000  |d 61000  |e 60000PA132322293  |e 61000PA132322293  |k 0/60000/  |k 1/60000/61000/  |p 5 
998 |g 134001486  |a Henzler, Thomas  |m 134001486:Henzler, Thomas  |d 60000  |e 60000PH134001486  |k 0/60000/  |p 4 
998 |g 1177310546  |a Gawlitza, Joshua Felix Michael  |m 1177310546:Gawlitza, Joshua Felix Michael  |d 60000  |d 62900  |e 60000PG1177310546  |e 62900PG1177310546  |k 0/60000/  |k 1/60000/62900/  |p 1  |x j 
999 |a KXP-PPN1667303198  |e 3486245562 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD","title":"Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD"}],"language":["eng"],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 March 2019"}],"name":{"displayForm":["Joshua Gawlitza, Timo Sturm, Kai Spohrer, Thomas Henzler, Ibrahim Akin, Stefan Schönberg, Martin Borggrefe, Holger Haubenreisser and Frederik Trinkmann"]},"recId":"1667303198","person":[{"role":"aut","given":"Joshua Felix Michael","display":"Gawlitza, Joshua Felix Michael","family":"Gawlitza"},{"role":"aut","family":"Sturm","given":"Timo","display":"Sturm, Timo"},{"family":"Spohrer","display":"Spohrer, Kai","given":"Kai","role":"aut"},{"given":"Thomas","display":"Henzler, Thomas","family":"Henzler","role":"aut"},{"family":"Akın","display":"Akın, Ibrahim","given":"Ibrahim","role":"aut"},{"family":"Schönberg","display":"Schönberg, Stefan","given":"Stefan","role":"aut"},{"given":"Martin","display":"Borggrefe, Martin","family":"Borggrefe","role":"aut"},{"given":"Holger","display":"Haubenreisser, Holger","family":"Haubenreisser","role":"aut"},{"family":"Trinkmann","display":"Trinkmann, Frederik","given":"Frederik","role":"aut"}],"note":["Gesehen am 12.06.2019"],"relHost":[{"id":{"eki":["718627814"],"zdb":["2662336-5"],"issn":["2075-4418"]},"part":{"issue":"1","year":"2019","extent":"13","text":"9(2019,1) Artikel-Nummer 33, 13 Seiten","volume":"9"},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 28.05.2020"],"origin":[{"publisherPlace":"Basel","dateIssuedKey":"2011","dateIssuedDisp":"2011-","publisher":"MDPI"}],"title":[{"subtitle":"open access journal","title_sort":"Diagnostics","title":"Diagnostics"}],"pubHistory":["1.2011 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"718627814","disp":"Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPDDiagnostics","language":["eng"]}],"id":{"doi":["10.3390/diagnostics9010033"],"eki":["1667303198"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"13 S."}]} 
SRT |a GAWLITZAJOPREDICTING2120