Continuous level Monte Carlo and sample-adaptive model hierarchies

In this paper, we present a generalization of the multilevel Monte Carlo (MLMC) method to a setting where the level parameter is a continuous variable. This continuous level Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt the model hierarchy to each sample. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Detommaso, Gianluca (VerfasserIn) , Dodwell, Tim (VerfasserIn) , Scheichl, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [2019]
In: SIAM ASA journal on uncertainty quantification
Year: 2019, Jahrgang: 7, Heft: 1, Pages: 93-116
ISSN:2166-2525
DOI:10.1137/18M1172259
Online-Zugang:Verlag, Volltext: https://doi.org/10.1137/18M1172259
Verlag, Volltext: https://epubs.siam.org/doi/10.1137/18M1172259
Volltext
Verfasserangaben:Gianluca Detommaso, Tim Dodwell, and Rob Scheichl

MARC

LEADER 00000caa a2200000 c 4500
001 1667811487
003 DE-627
005 20220816173657.0
007 cr uuu---uuuuu
008 190624s2019 xx |||||o 00| ||eng c
024 7 |a 10.1137/18M1172259  |2 doi 
035 |a (DE-627)1667811487 
035 |a (DE-599)KXP1667811487 
035 |a (OCoLC)1341229200 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Detommaso, Gianluca  |e VerfasserIn  |0 (DE-588)1189080567  |0 (DE-627)1667811894  |4 aut 
245 1 0 |a Continuous level Monte Carlo and sample-adaptive model hierarchies  |c Gianluca Detommaso, Tim Dodwell, and Rob Scheichl 
264 1 |c [2019] 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.06.2019 
520 |a In this paper, we present a generalization of the multilevel Monte Carlo (MLMC) method to a setting where the level parameter is a continuous variable. This continuous level Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt the model hierarchy to each sample. In addition, it can be made unbiased with respect to the expected value of the true quantity of interest provided the quantity of interest converges sufficiently fast. The practical implementation of the CLMC estimator is based on interpolating actual evaluations of the quantity of interest at a finite number of resolutions. As our new level parameter, we use the logarithm of a goal-oriented finite element error estimator for the accuracy of the quantity of interest. We prove the unbiasedness, as well as a complexity theorem that shows the same rate of complexity for CLMC as for MLMC. Finally, we provide some numerical evidence to support our theoretical results, by successfully testing CLMC on a standard PDE test problem. The numerical experiments demonstrate clear gains for samplewise adaptive refinement strategies over uniform refinements. 
700 1 |a Dodwell, Tim  |e VerfasserIn  |4 aut 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM ASA journal on uncertainty quantification  |d Philadelphia, Pa. : SIAM, 2013  |g 7(2019), 1, Seite 93-116  |h Online-Ressource  |w (DE-627)729754006  |w (DE-600)2690603-X  |w (DE-576)391400703  |x 2166-2525  |7 nnas 
773 1 8 |g volume:7  |g year:2019  |g number:1  |g pages:93-116  |g extent:14  |a Continuous level Monte Carlo and sample-adaptive model hierarchies 
856 4 0 |u https://doi.org/10.1137/18M1172259  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/18M1172259  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190624 
993 |a Article 
994 |a 2019 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PS1173753842  |e 110200PS1173753842  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
999 |a KXP-PPN1667811487  |e 3489369130 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Gianluca Detommaso, Tim Dodwell, and Rob Scheichl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1667811487","id":{"eki":["1667811487"],"doi":["10.1137/18M1172259"]},"note":["Gesehen am 24.06.2019"],"origin":[{"dateIssuedDisp":"[2019]","dateIssuedKey":"2019"}],"person":[{"family":"Detommaso","given":"Gianluca","display":"Detommaso, Gianluca","role":"aut"},{"role":"aut","display":"Dodwell, Tim","family":"Dodwell","given":"Tim"},{"display":"Scheichl, Robert","role":"aut","family":"Scheichl","given":"Robert"}],"title":[{"title":"Continuous level Monte Carlo and sample-adaptive model hierarchies","title_sort":"Continuous level Monte Carlo and sample-adaptive model hierarchies"}],"relHost":[{"id":{"eki":["729754006"],"issn":["2166-2525"],"zdb":["2690603-X"]},"pubHistory":["1.2013 -"],"name":{"displayForm":["Society for Industrial and Applied Mathematics ; American Statistical Association"]},"recId":"729754006","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 21.05.13"],"origin":[{"publisher":"SIAM","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisherPlace":"Philadelphia, Pa."}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Society for Industrial and Applied MathematicsSIAM ASA journal on uncertainty quantification","titleAlt":[{"title":"JUQ"},{"title":"Journal on uncertainty quantification"}],"language":["eng"],"title":[{"title_sort":"SIAM ASA journal on uncertainty quantification","title":"SIAM ASA journal on uncertainty quantification"}],"corporate":[{"display":"Society for Industrial and Applied Mathematics","role":"aut"},{"display":"American Statistical Association","role":"isb"}],"part":{"year":"2019","volume":"7","extent":"14","text":"7(2019), 1, Seite 93-116","pages":"93-116","issue":"1"}}],"physDesc":[{"noteIll":"Illustrationen","extent":"14 S."}]} 
SRT |a DETOMMASOGCONTINUOUS2019