A predictive model for patient similarity: classes based on secondary data and simple measurements as predictors

Predictive models optimized for average cases might work not perfect for cases deviating from average because they are based on a cohort of all patients. Models could be more personalized if they were built on a sub-cohort of patients similar to a current one and to train models on data collected fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dudchenko, Aleksei (VerfasserIn) , Knaup-Gregori, Petra (VerfasserIn) , Ganzinger, Matthias (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2018
In: pHealth 2018
Year: 2018, Pages: 167-172
DOI:10.3233/978-1-61499-868-6-167
Online-Zugang:Verlag, Volltext: https://doi.org/10.3233/978-1-61499-868-6-167
Volltext
Verfasserangaben:Aleksei Dudchenko, Georgy Kopanitsa, Petra Knaup, Matthias Ganzinger

MARC

LEADER 00000caa a2200000 c 4500
001 1667823973
003 DE-627
005 20220816173816.0
007 cr uuu---uuuuu
008 190624s2018 xx |||||o 00| ||eng c
024 7 |a 10.3233/978-1-61499-868-6-167  |2 doi 
035 |a (DE-627)1667823973 
035 |a (DE-599)KXP1667823973 
035 |a (OCoLC)1341229243 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Dudchenko, Aleksei  |e VerfasserIn  |0 (DE-588)1189090058  |0 (DE-627)1667824805  |4 aut 
245 1 2 |a A predictive model for patient similarity  |b classes based on secondary data and simple measurements as predictors  |c Aleksei Dudchenko, Georgy Kopanitsa, Petra Knaup, Matthias Ganzinger 
264 1 |c 2018 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.06.2019 
520 |a Predictive models optimized for average cases might work not perfect for cases deviating from average because they are based on a cohort of all patients. Models could be more personalized if they were built on a sub-cohort of patients similar to a current one and to train models on data collected from those similar patients. In this paper, we consider patient similarity as a classification task. We suppose that data such as diagnoses and treatment obtained by physicians (secondary data) are more relevant for similarity than tests and measurements (primary data). We defined several classes based on diagnoses and outcomes and apply a predictive model for classification. We used five commonly used and easy to obtain measurements as predictors for the model. All measurements were collected during the first 24 hours after admission. We have shown that classes of similar patients can be defined on the basis of a previous patient's secondary data and new patients can be classified into these classes. 
650 4 |a Forecasting 
650 4 |a Humans 
650 4 |a Models, Theoretical 
650 4 |a Patient Admission 
650 4 |a Patient classification 
650 4 |a Patient similarity 
650 4 |a Patients 
650 4 |a Predictive model 
700 1 |a Knaup-Gregori, Petra  |e VerfasserIn  |0 (DE-588)1032766328  |0 (DE-627)739278371  |0 (DE-576)380272814  |4 aut 
700 1 |a Ganzinger, Matthias  |d 1974-  |e VerfasserIn  |0 (DE-588)102301890X  |0 (DE-627)717346471  |0 (DE-576)366268082  |4 aut 
773 0 8 |i Enthalten in  |a pHealth (Veranstaltung : 15. : 2018 : Gjøvik)  |t pHealth 2018  |d Amsterdam, Netherlands : IOS Press, 2018  |g (2018), Seite 167-172  |h 1 Online-Ressource  |w (DE-627)168706024X  |z 161499868X  |z 9781614998686  |7 nnam 
773 1 8 |g year:2018  |g pages:167-172  |g extent:6  |a A predictive model for patient similarity classes based on secondary data and simple measurements as predictors 
856 4 0 |u https://doi.org/10.3233/978-1-61499-868-6-167  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190624 
993 |a ConferencePaper 
994 |a 2018 
998 |g 102301890X  |a Ganzinger, Matthias  |m 102301890X:Ganzinger, Matthias  |d 910000  |d 999701  |e 910000PG102301890X  |e 999701PG102301890X  |k 0/910000/  |k 1/910000/999701/  |p 4  |y j 
998 |g 1032766328  |a Knaup-Gregori, Petra  |m 1032766328:Knaup-Gregori, Petra  |d 910000  |d 999701  |d 50000  |e 910000PK1032766328  |e 999701PK1032766328  |e 50000PK1032766328  |k 0/910000/  |k 1/910000/999701/  |k 0/50000/  |p 3 
999 |a KXP-PPN1667823973  |e 3489421957 
BIB |a Y 
JSO |a {"title":[{"title":"A predictive model for patient similarity","title_sort":"predictive model for patient similarity","subtitle":"classes based on secondary data and simple measurements as predictors"}],"person":[{"role":"aut","given":"Aleksei","family":"Dudchenko","display":"Dudchenko, Aleksei"},{"display":"Knaup-Gregori, Petra","given":"Petra","family":"Knaup-Gregori","role":"aut"},{"role":"aut","family":"Ganzinger","given":"Matthias","display":"Ganzinger, Matthias"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"note":["Gesehen am 24.06.2019"],"id":{"doi":["10.3233/978-1-61499-868-6-167"],"eki":["1667823973"]},"recId":"1667823973","name":{"displayForm":["Aleksei Dudchenko, Georgy Kopanitsa, Petra Knaup, Matthias Ganzinger"]},"relHost":[{"type":{"media":"Online-Ressource","bibl":"book"},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018","publisher":"IOS Press","publisherPlace":"Amsterdam, Netherlands"}],"person":[{"role":"edt","display":"Blobel, Bernd","given":"Bernd","family":"Blobel"},{"given":"Bian","family":"Yang","display":"Yang, Bian","role":"edt"}],"relMultPart":[{"recId":"739899465","id":{"eki":["739899465"],"issn":["1879-8365"],"zdb":["2708884-4"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Studies in health technology and informatics","part":{"number_sort":["249"],"number":["volume 249"]},"dispAlt":"Studies in health technology and informatics","type":{"bibl":"serial","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"1991-","publisher":"IOS Press ˜[u.a.]œ","publisherPlace":"Amsterdam ˜[u.a.]œ","dateIssuedKey":"1991"}],"title":[{"title":"Studies in health technology and informatics","title_sort":"Studies in health technology and informatics"}],"pubHistory":["1.1991 -"]}],"title":[{"subtitle":"proceedings of the 15th International Conference on Wearable Micro and Nano Technologies for Personalized Health, 12-14 June 2018, Gjøvik, Norway","title_sort":"pHealth 2018","title":"pHealth 2018"}],"note":["Includes indexes"],"name":{"displayForm":["edited by Bernd Blobel (Medical Faculty, University of Regensburg, Germany), chair, scientific programm committee, and Brian [i.e Bian] Yang (Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway), chair, local organizing committee"]},"recId":"168706024X","id":{"isbn":["161499868X","9781614998686"],"eki":["168706024X"]},"language":["eng"],"part":{"year":"2018","text":"(2018), Seite 167-172","pages":"167-172","extent":"6"},"corporate":[{"display":"pHealth (15., 2018, Gjøvik)","role":"aut"}],"physDesc":[{"extent":"1 Online-Ressource"}],"disp":"pHealth (Veranstaltung : 15. : 2018 : Gjøvik)pHealth 2018","titleAlt":[{"title":"Proceedings of the 15th International Conference on Wearable Micro and Nano Technologies for Personalized Health"}]}],"physDesc":[{"extent":"6 S."}],"language":["eng"]} 
SRT |a DUDCHENKOAPREDICTIVE2018