Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary

In testing for noninferiority of two binomial distributions, the hypothesis formulation most commonly considered defines equivalence in terms of a constant bound to the difference of the two parameters. In order to avoid some basic logical difficulty entailed in this formulation we use an equivalenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wellek, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2016
In: The journal of statistical computation and simulation
Year: 2015, Jahrgang: 86, Heft: 9, Pages: 1736-1753
ISSN:1563-5163
DOI:10.1080/00949655.2015.1081906
Online-Zugang:Verlag, Volltext: https://doi.org/10.1080/00949655.2015.1081906
Volltext
Verfasserangaben:S. Wellek

MARC

LEADER 00000caa a22000002c 4500
001 1668156342
003 DE-627
005 20220816181408.0
007 cr uuu---uuuuu
008 190701r20162015xx |||||o 00| ||eng c
024 7 |a 10.1080/00949655.2015.1081906  |2 doi 
035 |a (DE-627)1668156342 
035 |a (DE-599)KXP1668156342 
035 |a (OCoLC)1341231578 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wellek, Stefan  |d 1945-  |e VerfasserIn  |0 (DE-588)1034560867  |0 (DE-627)745854095  |0 (DE-576)382153774  |4 aut 
245 1 0 |a Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary  |c S. Wellek 
264 1 |c 2016 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.07.2019 
500 |a Published online: 10 Sep 2015 
520 |a In testing for noninferiority of two binomial distributions, the hypothesis formulation most commonly considered defines equivalence in terms of a constant bound to the difference of the two parameters. In order to avoid some basic logical difficulty entailed in this formulation we use an equivalence region whose boundary has fixed vertical distance from the diagonal for all values of the reference responder rate above some cutoff point and coincides left from this point with the line joining it with the origin. For the corresponding noninferiority hypothesis we derive and compare two different testing procedures. The first one is based on an objective Bayesian decision rule. The other one is obtained through combining the score tests for noninferiority with respect to the difference and the ratio of the two proportions, respectively, by means of the intersection-union principle. Both procedures are extensively studied by means of exact computational methods. 
534 |c 2015 
650 4 |a binomial two-sample problem 
650 4 |a exact nonconditional test 
650 4 |a intersection-union rule 
650 4 |a objective Bayesian test 
650 4 |a score statisti 
773 0 8 |i Enthalten in  |t The journal of statistical computation and simulation  |d London [u.a.] : Taylor & Francis, 1972  |g 86(2016), 9, Seite 1736-1753  |h Online-Ressource  |w (DE-627)313649383  |w (DE-600)2004311-9  |w (DE-576)099138611  |x 1563-5163  |7 nnas  |a Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary 
773 1 8 |g volume:86  |g year:2016  |g number:9  |g pages:1736-1753  |g extent:18  |a Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary 
856 4 0 |u https://doi.org/10.1080/00949655.2015.1081906  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190701 
993 |a Article 
994 |a 2016 
998 |g 1034560867  |a Wellek, Stefan  |m 1034560867:Wellek, Stefan  |d 60000  |e 60000PW1034560867  |k 0/60000/  |p 1  |x j  |y j 
999 |a KXP-PPN1668156342  |e 3490346688 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["S. Wellek"]},"id":{"eki":["1668156342"],"doi":["10.1080/00949655.2015.1081906"]},"origin":[{"dateIssuedDisp":"2016","dateIssuedKey":"2016"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1563-5163"],"zdb":["2004311-9"],"eki":["313649383"]},"origin":[{"dateIssuedDisp":"1972-","publisher":"Taylor & Francis","dateIssuedKey":"1972","publisherPlace":"London [u.a.]"}],"recId":"313649383","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 05.09.05"],"disp":"Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundaryThe journal of statistical computation and simulation","part":{"extent":"18","volume":"86","text":"86(2016), 9, Seite 1736-1753","pages":"1736-1753","issue":"9","year":"2016"},"pubHistory":["1.1972 -"],"title":[{"title_sort":"journal of statistical computation and simulation","title":"The journal of statistical computation and simulation","subtitle":"JSCS"}]}],"physDesc":[{"extent":"18 S."}],"person":[{"role":"aut","display":"Wellek, Stefan","roleDisplay":"VerfasserIn","given":"Stefan","family":"Wellek"}],"title":[{"title":"Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary","title_sort":"Testing for noninferiority of binomial distributions referring to a modified equivalence region with piecewise linear boundary"}],"language":["eng"],"recId":"1668156342","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 01.07.2019","Published online: 10 Sep 2015"]} 
SRT |a WELLEKSTEFTESTINGFOR2016