Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times

Drug-target residence times can impact drug efficacy and safety, and are therefore increasingly being considered during lead optimization. For this purpose, computational methods to predict residence times, tau, for drug-like compounds and to derive structure-kinetic relationships are desirable. A c...

Full description

Saved in:
Bibliographic Details
Main Authors: Kokh, Daria B. (Author) , Kaufmann, Tom (Author) , Kister, Bastian (Author) , Wade, Rebecca C. (Author)
Format: Article (Journal)
Language:English
Published: 24 May 2019
In: Frontiers in molecular biosciences
Year: 2019, Volume: 6
ISSN:2296-889X
DOI:10.3389/fmolb.2019.00036
Online Access:Verlag, Volltext: https://doi.org/10.3389/fmolb.2019.00036
Verlag, Volltext: https://www.frontiersin.org/articles/10.3389/fmolb.2019.00036/full
Get full text
Author Notes:Daria B. Kokh, Tom Kaufmann, Bastian Kister, Rebecca C. Wade

MARC

LEADER 00000caa a2200000 c 4500
001 1668998327
003 DE-627
005 20230428192153.0
007 cr uuu---uuuuu
008 190711s2019 xx |||||o 00| ||eng c
024 7 |a 10.3389/fmolb.2019.00036  |2 doi 
035 |a (DE-627)1668998327 
035 |a (DE-599)KXP1668998327 
035 |a (OCoLC)1264083412 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Kokh, Daria B.  |e VerfasserIn  |0 (DE-588)1150707844  |0 (DE-627)1010913387  |0 (DE-576)497188945  |4 aut 
245 1 0 |a Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times  |c Daria B. Kokh, Tom Kaufmann, Bastian Kister, Rebecca C. Wade 
246 3 3 |a Machine learning analysis of RAMD trajectories to decipher molecular determinants of drug-target residence times 
264 1 |c 24 May 2019 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.07.2019 
500 |a Im Titel ist "tau" als griechischer Buchstabe dargestellt 
520 |a Drug-target residence times can impact drug efficacy and safety, and are therefore increasingly being considered during lead optimization. For this purpose, computational methods to predict residence times, tau, for drug-like compounds and to derive structure-kinetic relationships are desirable. A challenge for approaches based on molecular dynamics (MD) simulation is the fact that drug residence times are typically orders of magnitude longer than computationally feasible simulation times. Therefore, enhanced sampling methods are required. We recently reported one such approach: the tauRAMD procedure for estimating relative residence times by performing a large number of random acceleration MD (RAMD) simulations in which ligand dissociation occurs in times of about a nanosecond due to the application of an additional randomly oriented force to the ligand. The length of the RAMD simulations is used to deduce tau. The RAMD simulations also provide information on ligand egress pathways and dissociation mechanisms. Here, we describe a machine learning approach to systematically analyze protein-ligand binding contacts in the RAMD trajectories in order to derive regression models for estimating tau and to decipher the molecular features leading to longer tau values. We demonstrate that the regression models built on the protein-ligand interaction fingerprints of the dissociation trajectories result in robust estimates of tau for a set of 94 drug-like inhibitors of heat shock protein 90 (HSP90), even for the compounds for which the length of the RAMD trajectories does not provide a good estimation of tau. Thus, we find that machine learning helps to overcome inaccuracies in the modelling of the bound protein-ligand complexes due to incomplete sampling or force field deficiencies. Moreover, the approach facilitates the identification of features important for residence time. In particular, we observed that interactions of the ligand with the sidechain of F138, which is located on the border between the ATP binding pocket and a hydrophobic transient sub-pocket, play a key role in slowing compound dissociation. We expect that the combination of the tauRAMD simulation procedure with machine learning analysis will be generally applicable as an aid to target-based lead optimization. 
650 4 |a drug-protein residence time 
650 4 |a drug-target binding kinetics 
650 4 |a Heat shock protein 90 (hsp90) 
650 4 |a machine learning 
650 4 |a Molecular Dynamics Simulation 
650 4 |a structure-kinetic relationships (SKRs) 
650 4 |a tauRAMD 
700 1 |a Kaufmann, Tom  |e VerfasserIn  |0 (DE-588)1190299534  |0 (DE-627)1668993627  |4 aut 
700 1 |a Kister, Bastian  |e VerfasserIn  |0 (DE-588)1190298422  |0 (DE-627)1668992302  |4 aut 
700 1 |a Wade, Rebecca C.  |e VerfasserIn  |0 (DE-588)102801774X  |0 (DE-627)730136000  |0 (DE-576)276591402  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in molecular biosciences  |d Lausanne : Frontiers, 2014  |g 6(2019) Artikel-Nummer 36, 17 Seiten  |h Online-Ressource  |w (DE-627)820039691  |w (DE-600)2814330-9  |w (DE-576)427947782  |x 2296-889X  |7 nnas  |a Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times 
773 1 8 |g volume:6  |g year:2019  |g extent:17  |a Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times 
856 4 0 |u https://doi.org/10.3389/fmolb.2019.00036  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fmolb.2019.00036/full  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190711 
993 |a Article 
994 |a 2019 
998 |g 102801774X  |a Wade, Rebecca C.  |m 102801774X:Wade, Rebecca C.  |d 140000  |e 140000PW102801774X  |k 0/140000/  |p 4  |y j 
998 |g 1190298422  |a Kister, Bastian  |m 1190298422:Kister, Bastian  |d 110000  |d 110001  |e 110000PK1190298422  |e 110001PK1190298422  |k 0/110000/  |k 1/110000/110001/  |p 3 
998 |g 1190299534  |a Kaufmann, Tom  |m 1190299534:Kaufmann, Tom  |d 130000  |d 130300  |e 130000PK1190299534  |e 130300PK1190299534  |k 0/130000/  |k 1/130000/130300/  |p 2 
998 |g 1150707844  |a Kokh, Daria B.  |m 1150707844:Kokh, Daria B.  |p 1  |x j 
999 |a KXP-PPN1668998327  |e 3492633048 
BIB |a Y 
SER |a journal 
JSO |a {"titleAlt":[{"title":"Machine learning analysis of RAMD trajectories to decipher molecular determinants of drug-target residence times"}],"note":["Gesehen am 11.07.2019","Im Titel ist \"tau\" als griechischer Buchstabe dargestellt"],"relHost":[{"disp":"Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence timesFrontiers in molecular biosciences","recId":"820039691","part":{"extent":"17","text":"6(2019) Artikel-Nummer 36, 17 Seiten","volume":"6","year":"2019"},"id":{"eki":["820039691"],"zdb":["2814330-9"],"issn":["2296-889X"]},"origin":[{"publisherPlace":"Lausanne","publisher":"Frontiers","dateIssuedKey":"2014","dateIssuedDisp":"2014-"}],"language":["eng"],"pubHistory":["1.2014 -"],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 12.08.20"],"title":[{"title":"Frontiers in molecular biosciences","title_sort":"Frontiers in molecular biosciences"}]}],"physDesc":[{"extent":"17 S."}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times","title_sort":"Machine learning analysis of [tau]RAMD trajectories to decipher molecular determinants of drug-target residence times"}],"person":[{"family":"Kokh","given":"Daria B.","role":"aut","display":"Kokh, Daria B."},{"family":"Kaufmann","role":"aut","given":"Tom","display":"Kaufmann, Tom"},{"display":"Kister, Bastian","given":"Bastian","role":"aut","family":"Kister"},{"display":"Wade, Rebecca C.","family":"Wade","given":"Rebecca C.","role":"aut"}],"recId":"1668998327","name":{"displayForm":["Daria B. Kokh, Tom Kaufmann, Bastian Kister, Rebecca C. Wade"]},"origin":[{"dateIssuedDisp":"24 May 2019","dateIssuedKey":"2019"}],"id":{"eki":["1668998327"],"doi":["10.3389/fmolb.2019.00036"]}} 
SRT |a KOKHDARIABMACHINELEA2420