Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging

Purpose To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables...

Full description

Saved in:
Bibliographic Details
Main Authors: Akçakaya, Mehmet (Author) , Weingärtner, Sebastian (Author)
Format: Article (Journal)
Language:English
Published: 2019
In: Magnetic resonance in medicine
Year: 2018, Volume: 81, Issue: 1, Pages: 439-453
ISSN:1522-2594
DOI:10.1002/mrm.27420
Online Access:Verlag, Volltext: https://doi.org/10.1002/mrm.27420
Verlag, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27420
Get full text
Author Notes:Mehmet Akçakaya, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil

MARC

LEADER 00000caa a2200000 c 4500
001 1669016595
003 DE-627
005 20230428192157.0
007 cr uuu---uuuuu
008 190711r20192018xx |||||o 00| ||eng c
024 7 |a 10.1002/mrm.27420  |2 doi 
035 |a (DE-627)1669016595 
035 |a (DE-599)KXP1669016595 
035 |a (OCoLC)1341233469 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Akçakaya, Mehmet  |e VerfasserIn  |0 (DE-588)1145077587  |0 (DE-627)1005318689  |0 (DE-576)495625507  |4 aut 
245 1 0 |a Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction  |b database-free deep learning for fast imaging  |c Mehmet Akçakaya, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil 
264 1 |c 2019 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First published: 18 September 2018 
500 |a Correction added after online publication 10 November 2018 
500 |a Gesehen am 11.07.2019 
520 |a Purpose To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. 
534 |c 2018 
650 4 |a accelerated imaging 
650 4 |a convolutional neural networks 
650 4 |a deep learning 
650 4 |a image reconstruction 
650 4 |a k-space interpolation 
650 4 |a nonlinear estimation 
650 4 |a parallel imaging 
700 1 |a Weingärtner, Sebastian  |d 1991-  |e VerfasserIn  |0 (DE-588)1051891507  |0 (DE-627)786975199  |0 (DE-576)407522883  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in medicine  |d New York, NY [u.a.] : Wiley-Liss, 1984  |g 81(2019), 1, Seite 439-453  |h Online-Ressource  |w (DE-627)303257040  |w (DE-600)1493786-4  |w (DE-576)096290455  |x 1522-2594  |7 nnas  |a Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction database-free deep learning for fast imaging 
773 1 8 |g volume:81  |g year:2019  |g number:1  |g pages:439-453  |g extent:15  |a Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction database-free deep learning for fast imaging 
856 4 0 |u https://doi.org/10.1002/mrm.27420  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27420  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190711 
993 |a Article 
994 |a 2019 
998 |g 1051891507  |a Weingärtner, Sebastian  |m 1051891507:Weingärtner, Sebastian  |d 60000  |d 65200  |e 60000PW1051891507  |e 65200PW1051891507  |k 0/60000/  |k 1/60000/65200/  |p 3 
999 |a KXP-PPN1669016595  |e 3492677762 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Mehmet Akçakaya, Steen Moeller, Sebastian Weingärtner, Kâmil Uğurbil"]},"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"id":{"eki":["1669016595"],"doi":["10.1002/mrm.27420"]},"physDesc":[{"extent":"15 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1493786-4"],"doi":["10.1002/(ISSN)1522-2594"],"eki":["303257040"],"issn":["1522-2594"]},"origin":[{"publisherPlace":"New York, NY [u.a.]","publisher":"Wiley-Liss","dateIssuedKey":"1984","dateIssuedDisp":"1984-"}],"titleAlt":[{"title":"MRM"}],"part":{"year":"2019","issue":"1","pages":"439-453","text":"81(2019), 1, Seite 439-453","volume":"81","extent":"15"},"pubHistory":["1.1984 -"],"language":["eng"],"recId":"303257040","disp":"Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction database-free deep learning for fast imagingMagnetic resonance in medicine","note":["Gesehen am 28.02.08"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Magnetic resonance in medicine","subtitle":"MRM ; an official journal of the International Society for Magnetic Resonance in Medicine","title_sort":"Magnetic resonance in medicine"}]}],"person":[{"family":"Akçakaya","given":"Mehmet","display":"Akçakaya, Mehmet","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Sebastian","family":"Weingärtner","role":"aut","roleDisplay":"VerfasserIn","display":"Weingärtner, Sebastian"}],"title":[{"title_sort":"Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction","subtitle":"database-free deep learning for fast imaging","title":"Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction"}],"note":["First published: 18 September 2018","Correction added after online publication 10 November 2018","Gesehen am 11.07.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1669016595"} 
SRT |a AKCAKAYAMESCANSPECIF2019