Automatic accuracy prediction for AMR parsing

Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Opitz, Juri (VerfasserIn) , Frank, Anette (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 17 Apr 2019
In: Arxiv
Year: 2019, Pages: 1-12
Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1904.08301
Volltext
Verfasserangaben:Juri Opitz and Anette Frank

MARC

LEADER 00000caa a2200000 c 4500
001 1669121089
003 DE-627
005 20220816191604.0
007 cr uuu---uuuuu
008 190715s2019 xx |||||o 00| ||eng c
035 |a (DE-627)1669121089 
035 |a (DE-599)KXP1669121089 
035 |a (OCoLC)1341233694 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
245 0 0 |a Automatic accuracy prediction for AMR parsing  |c Juri Opitz and Anette Frank 
264 1 |c 17 Apr 2019 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.07.2019 
520 |a Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective. 
650 4 |a Computer Science - Computation and Language 
700 1 |a Opitz, Juri  |d 1988-  |e VerfasserIn  |0 (DE-588)117985876X  |0 (DE-627)1067540032  |0 (DE-576)518394263  |4 aut 
700 1 |a Frank, Anette  |e VerfasserIn  |0 (DE-588)1020288108  |0 (DE-627)691172161  |0 (DE-576)36005689X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2019), Artikel-ID 1904.08301, Seite 1-12  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Automatic accuracy prediction for AMR parsing 
773 1 8 |g year:2019  |g elocationid:1904.08301  |g pages:1-12  |g extent:12  |a Automatic accuracy prediction for AMR parsing 
787 0 8 |i Forschungsdaten  |t AMR parse quality prediction [Source code]  |d Heidelberg : Universität, 2019  |h 1 Online-Ressource (1 File)  |w (DE-627)1669120643 
856 4 0 |u http://arxiv.org/abs/1904.08301  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190715 
993 |a Article 
994 |a 2019 
998 |g 1020288108  |a Frank, Anette  |m 1020288108:Frank, Anette  |d 90000  |d 90500  |e 90000PF1020288108  |e 90500PF1020288108  |k 0/90000/  |k 1/90000/90500/  |p 2  |y j 
998 |g 117985876X  |a Opitz, Juri  |m 117985876X:Opitz, Juri  |d 90000  |d 90500  |e 90000PO117985876X  |e 90500PO117985876X  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j 
999 |a KXP-PPN1669121089  |e 3493289022 
BIB |a Y 
JSO |a {"note":["Gesehen am 15.07.2019"],"origin":[{"dateIssuedDisp":"17 Apr 2019","dateIssuedKey":"2019"}],"title":[{"title_sort":"Automatic accuracy prediction for AMR parsing","title":"Automatic accuracy prediction for AMR parsing"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"name":{"displayForm":["Juri Opitz and Anette Frank"]},"physDesc":[{"extent":"12 S."}],"recId":"1669121089","relHost":[{"part":{"pages":"1-12","year":"2019","extent":"12","text":"(2019), Artikel-ID 1904.08301, Seite 1-12"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"language":["eng"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"recId":"509006531","physDesc":[{"extent":"Online-Ressource"}],"disp":"Automatic accuracy prediction for AMR parsingArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"note":["Gesehen am 28.05.2024"],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"pubHistory":["1991 -"]}],"id":{"eki":["1669121089"]},"person":[{"role":"aut","given":"Juri","family":"Opitz","display":"Opitz, Juri"},{"family":"Frank","display":"Frank, Anette","given":"Anette","role":"aut"}],"language":["eng"]} 
SRT |a OPITZJURIFAUTOMATICA1720