On the Fourier coefficients of Siegel modular forms

One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for Z = X + iY when Y −→ 0.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Böcherer, Siegfried (VerfasserIn) , Kohnen, Winfried (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 October 2016
In: Nagoya mathematical journal
Year: 2019, Jahrgang: 234, Pages: 1-16
ISSN:2152-6842
DOI:10.1017/nmj.2016.41
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/nmj.2016.41
Verlag, Volltext: https://www.cambridge.org/core/product/identifier/S0027763016000416/type/journal_article
Volltext
Verfasserangaben:Siegfried Böcherer and Winfried Kohnen
Beschreibung
Zusammenfassung:One can characterize Siegel cusp forms among Siegel modular forms by growth properties of their Fourier coefficients. We give a new proof, which works also for more general types of modular forms. Our main tool is to study the behavior of a modular form for Z = X + iY when Y −→ 0.
Beschreibung:Gesehen am 16.07.2019
Beschreibung:Online Resource
ISSN:2152-6842
DOI:10.1017/nmj.2016.41