Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients

We consider the forward problem of uncertainty quantification for the generalised Dirichlet eigenvalue problem for a coercive second order partial differential operator with random coefficients, motivated by problems in structural mechanics, photonic crystals and neutron diffusion. The PDE coefficie...

Full description

Saved in:
Bibliographic Details
Main Authors: Gilbert, Alexander (Author) , Graham, I. G. (Author) , Kuo, F. Y. (Author) , Scheichl, Robert (Author) , Sloan, I. H. (Author)
Format: Article (Journal)
Language:English
Published: 10 May 2019
In: Numerische Mathematik
Year: 2019, Volume: 142, Issue: 4, Pages: 863-915
ISSN:0945-3245
DOI:10.1007/s00211-019-01046-6
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/s00211-019-01046-6
Verlag, Volltext: https://link.springer.com/article/10.1007%2Fs00211-019-01046-6
Get full text
Author Notes:A.D. Gilbert, I.G. Graham, F.Y. Kuo, R. Scheichl, I.H. Sloan

MARC

LEADER 00000caa a2200000 c 4500
001 1669537684
003 DE-627
005 20220816194503.0
007 cr uuu---uuuuu
008 190722s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00211-019-01046-6  |2 doi 
035 |a (DE-627)1669537684 
035 |a (DE-599)KXP1669537684 
035 |a (OCoLC)1341234151 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gilbert, Alexander  |e VerfasserIn  |0 (DE-588)1180547047  |0 (DE-627)1067775641  |0 (DE-576)520275241  |4 aut 
245 1 0 |a Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients  |c A.D. Gilbert, I.G. Graham, F.Y. Kuo, R. Scheichl, I.H. Sloan 
264 1 |c 10 May 2019 
300 |a 53 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.07.2019 
520 |a We consider the forward problem of uncertainty quantification for the generalised Dirichlet eigenvalue problem for a coercive second order partial differential operator with random coefficients, motivated by problems in structural mechanics, photonic crystals and neutron diffusion. The PDE coefficients are assumed to be uniformly bounded random fields, represented as infinite series parametrised by uniformly distributed i.i.d. random variables. The expectation of the fundamental eigenvalue of this problem is computed by (a) truncating the infinite series which define the coefficients; (b) approximating the resulting truncated problem using lowest order conforming finite elements and a sparse matrix eigenvalue solver; and (c) approximating the resulting finite (but high dimensional) integral by a randomly shifted quasi-Monte Carlo lattice rule, with specially chosen generating vector. We prove error estimates for the combined error, which depend on the truncation dimension s, the finite element mesh diameter h, and the number of quasi-Monte Carlo samples N. Under suitable regularity assumptions, our bounds are of the particular form O(h2+N−1+δ)O(h2+N−1+δ){\mathcal {O}}(h^2 + N^{-1 + \delta }), where δ>0δ>0\delta > 0 is arbitrary and the hidden constant is independent of the truncation dimension, which needs to grow as h→0h→0h\rightarrow 0 and N→∞N→∞N \rightarrow \infty . As for the analogous PDE source problem, the conditions under which our error bounds hold depend on a parameter p∈(0,1)p∈(0,1)p \in (0, 1) representing the summability of the terms in the series expansions of the coefficients. Although the eigenvalue problem is nonlinear, which means it is generally considered harder than the source problem, in almost all cases (p≠1p≠1p \ne 1) we obtain error bounds that converge at the same rate as the corresponding rate for the source problem. The proof involves a detailed study of the regularity of the fundamental eigenvalue as a function of the random parameters. As a key intermediate result in the analysis, we prove that the spectral gap (between the fundamental and the second eigenvalues) is uniformly positive over all realisations of the random problem. 
650 4 |a 65D30 
650 4 |a 65N25 
650 4 |a 65N30 
700 1 |a Graham, I. G.  |e VerfasserIn  |4 aut 
700 1 |a Kuo, F. Y.  |e VerfasserIn  |4 aut 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
700 1 |a Sloan, I. H.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Numerische Mathematik  |d Berlin : Springer, 1959  |g 142(2019), 4, Seite 863-915  |h Online-Ressource  |w (DE-627)225690438  |w (DE-600)1364300-9  |w (DE-576)074528831  |x 0945-3245  |7 nnas  |a Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients 
773 1 8 |g volume:142  |g year:2019  |g number:4  |g pages:863-915  |g extent:53  |a Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients 
856 4 0 |u http://dx.doi.org/10.1007/s00211-019-01046-6  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007%2Fs00211-019-01046-6  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190722 
993 |a Article 
994 |a 2019 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PS1173753842  |e 110200PS1173753842  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 4 
998 |g 1180547047  |a Gilbert, Alexander  |m 1180547047:Gilbert, Alexander  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PG1180547047  |e 110200PG1180547047  |e 110000PG1180547047  |e 110400PG1180547047  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1669537684  |e 3495446176 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1007/s00211-019-01046-6"],"eki":["1669537684"]},"recId":"1669537684","name":{"displayForm":["A.D. Gilbert, I.G. Graham, F.Y. Kuo, R. Scheichl, I.H. Sloan"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"physDesc":[{"extent":"53 S."}],"relHost":[{"title":[{"title_sort":"Numerische Mathematik","title":"Numerische Mathematik"}],"part":{"volume":"142","year":"2019","extent":"53","pages":"863-915","text":"142(2019), 4, Seite 863-915","issue":"4"},"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficientsNumerische Mathematik","language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 06.05.2022"],"origin":[{"publisher":"Springer ; Springer","dateIssuedDisp":"1959-","dateIssuedKey":"1959","publisherPlace":"Berlin ; Heidelberg ; Berlin ; Heidelberg [u.a.]"}],"id":{"zdb":["1364300-9"],"issn":["0945-3245"],"eki":["225690438"]},"pubHistory":["1.1959 -"],"recId":"225690438"}],"title":[{"title_sort":"Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients","title":"Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients"}],"person":[{"given":"Alexander","family":"Gilbert","display":"Gilbert, Alexander","role":"aut"},{"role":"aut","display":"Graham, I. G.","given":"I. G.","family":"Graham"},{"role":"aut","display":"Kuo, F. Y.","given":"F. Y.","family":"Kuo"},{"family":"Scheichl","given":"Robert","role":"aut","display":"Scheichl, Robert"},{"display":"Sloan, I. H.","role":"aut","family":"Sloan","given":"I. H."}],"origin":[{"dateIssuedDisp":"10 May 2019","dateIssuedKey":"2019"}],"note":["Gesehen am 22.07.2019"]} 
SRT |a GILBERTALEANALYSISOF1020