Stochastic calculus with respect to Gaussian processes

Stochastic integration wrt Gaussian processes has raised strong interest in recent years, motivated in particular by its applications in Internet traffic modeling, biomedicine and finance. The aim of this work is to define and develop a White Noise Theory-based anticipative stochastic calculus with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lebovits, Joachim (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Potential analysis
Year: 2017, Jahrgang: 50, Heft: 1, Pages: 1-42
ISSN:1572-929X
DOI:10.1007/s11118-017-9671-5
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s11118-017-9671-5
Volltext
Verfasserangaben:Joachim Lebovits

MARC

LEADER 00000caa a2200000 c 4500
001 1669581233
003 DE-627
005 20220816194719.0
007 cr uuu---uuuuu
008 190722r20192017xx |||||o 00| ||eng c
024 7 |a 10.1007/s11118-017-9671-5  |2 doi 
035 |a (DE-627)1669581233 
035 |a (DE-599)KXP1669581233 
035 |a (OCoLC)1341234118 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lebovits, Joachim  |e VerfasserIn  |0 (DE-588)1191135136  |0 (DE-627)1669581152  |4 aut 
245 1 0 |a Stochastic calculus with respect to Gaussian processes  |c Joachim Lebovits 
264 1 |c 2019 
300 |a 42 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 20 December 2017 
500 |a Gesehen am 22.07.2019 
520 |a Stochastic integration wrt Gaussian processes has raised strong interest in recent years, motivated in particular by its applications in Internet traffic modeling, biomedicine and finance. The aim of this work is to define and develop a White Noise Theory-based anticipative stochastic calculus with respect to all Gaussian processes that have an integral representation over a real (maybe infinite) interval. Very rich, this class of Gaussian processes contains, among many others, Volterra processes (and thus fractional Brownian motion) as well as processes the regularity of which varies along the time (such as multifractional Brownian motion). A systematic comparison of the stochastic calculus (including Itô formula) we provide here, to the ones given by Malliavin calculus in Aloś (Ann. Probab. 29(2), 766-801 2001), Mocioalca and Viens (J. Funct. Anal. 222(2), 385-434 2005), Nualart and Taqqu (Stoch. Anal Appl. 24(3), 599-614 2006), Kruk et al. (J. Funct. Anal. 249(1), 92-142 2007), Kruk and Russo (2010), Lei and Nualart (Commun. Stoch. Anal. 6(3), 379-402 2012) and Sottinen and Viitasaari (2014), and by Itô stochastic calculus is also made. Not only our stochastic calculus fully generalizes and extends the ones originally proposed in Mocioalca and Viens (J. Funct. Anal. 222(2), 385-434 2005) and in Nualart and Taqqu (Stoch. Anal Appl. 24(3), 599-614 2006) for Gaussian processes, but also the ones proposed in Bender (Stoch. Process. Appl. 104, 81-106 2003), Biagini et al. (2004) and Elliott and Van der Hoek (Math. Financ. 13(2), 301-330 2003) for fractional Brownian motion (resp. in Lebovits, Ann. Univ. Buchar. Math. Ser. 4(LXII)(1), 397-413 2013; Lebovits and Lévy Véhel Stoch. Int. J. Probab. Stoch. Processes 86(1), 87-124 2014; Lebovits et al. Stoch. Process. Appl. 124(1), 678-708 2014 for multifractional Brownian motion). 
534 |c 2017 
650 4 |a 60G15 
650 4 |a 60G22 
650 4 |a 60H05 
650 4 |a 60H40 
650 4 |a Gaussian processes 
650 4 |a Itô formula 
650 4 |a Stochastic analysis 
650 4 |a Varying regularity processes 
650 4 |a White noise theory 
650 4 |a Wick-Itô integrals 
773 0 8 |i Enthalten in  |t Potential analysis  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1992  |g 50(2019), 1, Seite 1-42  |h Online-Ressource  |w (DE-627)269758720  |w (DE-600)1475719-9  |w (DE-576)105357065  |x 1572-929X  |7 nnas  |a Stochastic calculus with respect to Gaussian processes 
773 1 8 |g volume:50  |g year:2019  |g number:1  |g pages:1-42  |g extent:42  |a Stochastic calculus with respect to Gaussian processes 
856 4 0 |u https://doi.org/10.1007/s11118-017-9671-5  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190722 
993 |a Article 
994 |a 2019 
998 |g 1191135136  |a Lebovits, Joachim  |m 1191135136:Lebovits, Joachim  |d 620000  |d 620400  |e 620000PL1191135136  |e 620400PL1191135136  |k 0/620000/  |k 1/620000/620400/  |p 1  |x j  |y j 
999 |a KXP-PPN1669581233  |e 3495600914 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"42 S."}],"relHost":[{"title":[{"title_sort":"Potential analysis","title":"Potential analysis","subtitle":"an international journal devoted to the interactions between potential theory, probability theory, geometry and functional analysis"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 02.12.05"],"disp":"Stochastic calculus with respect to Gaussian processesPotential analysis","recId":"269758720","language":["eng"],"pubHistory":["1.1992 -"],"part":{"year":"2019","issue":"1","pages":"1-42","text":"50(2019), 1, Seite 1-42","volume":"50","extent":"42"},"origin":[{"dateIssuedDisp":"1992-","publisher":"Springer Science + Business Media B.V ; Kluwer Academic Publ.","dateIssuedKey":"1992","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"zdb":["1475719-9"],"eki":["269758720"],"issn":["1572-929X"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"id":{"eki":["1669581233"],"doi":["10.1007/s11118-017-9671-5"]},"name":{"displayForm":["Joachim Lebovits"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 20 December 2017","Gesehen am 22.07.2019"],"recId":"1669581233","language":["eng"],"title":[{"title_sort":"Stochastic calculus with respect to Gaussian processes","title":"Stochastic calculus with respect to Gaussian processes"}],"person":[{"given":"Joachim","family":"Lebovits","role":"aut","roleDisplay":"VerfasserIn","display":"Lebovits, Joachim"}]} 
SRT |a LEBOVITSJOSTOCHASTIC2019