Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernard, Olivier (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn) , Wolf, Ivo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: October 29, 2018
In: IEEE transactions on medical imaging
Year: 2018, Jahrgang: 37, Heft: 11, Pages: 2514-2525
ISSN:1558-254X
DOI:10.1109/TMI.2018.2837502
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1109/TMI.2018.2837502
Volltext
Verfasserangaben:Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant, Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Christian F. Baumgartner, Lisa M. Koch, Jelmer M. Wolterink, Ivana Išgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin

MARC

LEADER 00000caa a2200000 c 4500
001 1669645134
003 DE-627
005 20230427111750.0
007 cr uuu---uuuuu
008 190723s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TMI.2018.2837502  |2 doi 
035 |a (DE-627)1669645134 
035 |a (DE-599)KXP1669645134 
035 |a (OCoLC)1341234033 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bernard, Olivier  |e VerfasserIn  |0 (DE-588)1191214648  |0 (DE-627)1669642569  |4 aut 
245 1 0 |a Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis  |b is the problem solved?  |c Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant, Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Christian F. Baumgartner, Lisa M. Koch, Jelmer M. Wolterink, Ivana Išgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin 
264 1 |c October 29, 2018 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.07.2019 
520 |a Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions. 
650 4 |a 150 multiequipments 
650 4 |a 2017 MICCAI-ACDC challenge 
650 4 |a Automatic Cardiac Diagnosis Challenge dataset 
650 4 |a automatic diagnosis 
650 4 |a automatic extraction 
650 4 |a automatic MRI cardiac multistructures segmentation 
650 4 |a Biomedical imaging 
650 4 |a biomedical MRI 
650 4 |a cardiac CMRI 
650 4 |a cardiac magnetic resonance images 
650 4 |a cardiac MRI assessment 
650 4 |a Cardiac segmentation and diagnosis 
650 4 |a cardiology 
650 4 |a classification task 
650 4 |a common clinical task 
650 4 |a corresponding tasks 
650 4 |a deep learning 
650 4 |a deep learning techniques 
650 4 |a fully annotated dataset 
650 4 |a fully automatic analysis 
650 4 |a Heart 
650 4 |a highly accurate analysis 
650 4 |a image segmentation 
650 4 |a Image segmentation 
650 4 |a intense research 
650 4 |a largest publicly available annotated dataset 
650 4 |a learning (artificial intelligence) 
650 4 |a left and right ventricles 
650 4 |a left ventricular cavity 
650 4 |a Machine learning 
650 4 |a Magnetic resonance imaging 
650 4 |a medical experts 
650 4 |a medical image processing 
650 4 |a MRI 
650 4 |a multislice 2-D cine MRI 
650 4 |a myocardium 
650 4 |a Myocardium 
650 4 |a reference measurements 
650 4 |a segmentation task 
650 4 |a state-of-the-art deep learning methods 
650 4 |a Task analysis 
650 4 |a ventricle 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
700 1 |a Wolf, Ivo  |d 1973-  |e VerfasserIn  |0 (DE-588)12485186X  |0 (DE-627)366973533  |0 (DE-576)29453511X  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on medical imaging  |d New York, NY : Institute of Electrical and Electronics Engineers,, 1982  |g 37(2018), 11, Seite 2514-2525  |h Online-Ressource  |w (DE-627)341354759  |w (DE-600)2068206-2  |w (DE-576)105283061  |x 1558-254X  |7 nnas 
773 1 8 |g volume:37  |g year:2018  |g number:11  |g pages:2514-2525  |g extent:12  |a Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis is the problem solved? 
856 4 0 |u http://dx.doi.org/10.1109/TMI.2018.2837502  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190723 
993 |a Article 
994 |a 2018 
998 |g 12485186X  |a Wolf, Ivo  |m 12485186X:Wolf, Ivo  |d 50000  |e 50000PW12485186X  |k 0/50000/  |p 27 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 910000  |d 911400  |d 50000  |e 910000PM1100551875  |e 911400PM1100551875  |e 50000PM1100551875  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 25 
999 |a KXP-PPN1669645134  |e 3495867996 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1669645134","id":{"doi":["10.1109/TMI.2018.2837502"],"eki":["1669645134"]},"name":{"displayForm":["Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant, Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Christian F. Baumgartner, Lisa M. Koch, Jelmer M. Wolterink, Ivana Išgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin"]},"origin":[{"dateIssuedDisp":"October 29, 2018","dateIssuedKey":"2018"}],"language":["eng"],"note":["Gesehen am 23.07.2019"],"person":[{"family":"Bernard","role":"aut","display":"Bernard, Olivier","given":"Olivier"},{"given":"Klaus H.","display":"Maier-Hein, Klaus H.","role":"aut","family":"Maier-Hein"},{"given":"Ivo","display":"Wolf, Ivo","role":"aut","family":"Wolf"}],"relHost":[{"recId":"341354759","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"part":{"year":"2018","pages":"2514-2525","issue":"11","extent":"12","text":"37(2018), 11, Seite 2514-2525","volume":"37"},"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["341354759"],"zdb":["2068206-2"],"issn":["1558-254X"]},"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging","corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"origin":[{"dateIssuedKey":"1982","publisherPlace":"New York, NY ; New York, NY","dateIssuedDisp":"1982-","publisher":"Institute of Electrical and Electronics Engineers, ; IEEE"}],"pubHistory":["1.1982(July) -"],"titleAlt":[{"title":"Transactions on medical imaging"}],"note":["Gesehen am 13.01.11"],"title":[{"title":"IEEE transactions on medical imaging","subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society ...","title_sort":"IEEE transactions on medical imaging"}]}],"title":[{"subtitle":"is the problem solved?","title_sort":"Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis","title":"Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis"}],"physDesc":[{"extent":"12 S."}]} 
SRT |a BERNARDOLIDEEPLEARNI2920