Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation

Purpose X-ray scattering leads to CT images with a reduced contrast, inaccurate CT values as well as streak and cupping artifacts. Therefore, scatter correction is crucial to maintain the diagnostic value of CT and CBCT examinations. However, existing approaches are not able to combine both high acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maier, Joscha (VerfasserIn) , Eulig, Elias (VerfasserIn) , Vöth, Tim (VerfasserIn) , Sawall, Stefan (VerfasserIn) , Kachelrieß, Marc (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Medical physics
Year: 2018, Jahrgang: 46, Heft: 1, Pages: 238-249
ISSN:2473-4209
DOI:10.1002/mp.13274
Online-Zugang:Verlag, Volltext: https://doi.org/10.1002/mp.13274
Verlag, Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13274
Volltext
Verfasserangaben:Joscha Maier, Elias Eulig, Tim Vöth, Michael Knaup, Jan Kuntz, Stefan Sawall, Marc Kachelrieß

MARC

LEADER 00000caa a2200000 c 4500
001 1670315630
003 DE-627
005 20230427055733.0
007 cr uuu---uuuuu
008 190731r20192018xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.13274  |2 doi 
035 |a (DE-627)1670315630 
035 |a (DE-599)KXP1670315630 
035 |a (OCoLC)1341234838 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Maier, Joscha  |d 1988-  |e VerfasserIn  |0 (DE-588)1185600868  |0 (DE-627)1664987231  |4 aut 
245 1 0 |a Real-time scatter estimation for medical CT using the deep scatter estimation  |b Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation  |c Joscha Maier, Elias Eulig, Tim Vöth, Michael Knaup, Jan Kuntz, Stefan Sawall, Marc Kachelrieß 
264 1 |c 2019 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a published 26 November 2018 
500 |a Gesehen am 31.07.2019 
520 |a Purpose X-ray scattering leads to CT images with a reduced contrast, inaccurate CT values as well as streak and cupping artifacts. Therefore, scatter correction is crucial to maintain the diagnostic value of CT and CBCT examinations. However, existing approaches are not able to combine both high accuracy and high computational performance. Therefore, we propose the deep scatter estimation (DSE): a deep convolutional neural network to derive highly accurate scatter estimates in real time. Methods Gold standard scatter estimation approaches rely on dedicated Monte Carlo (MC) photon transport codes. However, being computationally expensive, MC methods cannot be used routinely. To enable real-time scatter correction with similar accuracy, DSE uses a deep convolutional neural network that is trained to predict MC scatter estimates based on the acquired projection data. Here, the potential of DSE is demonstrated using simulations of CBCT head, thorax, and abdomen scans as well as measurements at an experimental table-top CBCT. Two conventional computationally efficient scatter estimation approaches were implemented as reference: a kernel-based scatter estimation (KSE) and the hybrid scatter estimation (HSE). Results The simulation study demonstrates that DSE generalizes well to varying tube voltages, varying noise levels as well as varying anatomical regions as long as they are appropriately represented within the training data. In any case the deviation of the scatter estimates from the ground truth MC scatter distribution is less than 1.8% while it is between 6.2% and 293.3% for HSE and between 11.2% and 20.5% for KSE. To evaluate the performance for real data, measurements of an anthropomorphic head phantom were performed. Errors were quantified by a comparison to a slit scan reconstruction. Here, the deviation is 278 HU (no correction), 123 HU (KSE), 65 HU (HSE), and 6 HU (DSE), respectively. Conclusions The DSE clearly outperforms conventional scatter estimation approaches in terms of accuracy. DSE is nearly as accurate as Monte Carlo simulations but is superior in terms of speed (≈10 ms/projection) by orders of magnitude. 
534 |c 2018 
700 1 |a Eulig, Elias  |d 1995-  |e VerfasserIn  |0 (DE-588)1191843181  |0 (DE-627)1670315185  |4 aut 
700 1 |a Vöth, Tim  |d 1995-  |e VerfasserIn  |0 (DE-588)1191843386  |0 (DE-627)1670315606  |4 aut 
700 1 |a Sawall, Stefan  |d 1985-  |e VerfasserIn  |0 (DE-588)1031331298  |0 (DE-627)736275746  |0 (DE-576)378788841  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 46(2019), 1, Seite 238-249  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Real-time scatter estimation for medical CT using the deep scatter estimation Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation 
773 1 8 |g volume:46  |g year:2019  |g number:1  |g pages:238-249  |g extent:12  |a Real-time scatter estimation for medical CT using the deep scatter estimation Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation 
856 4 0 |u https://doi.org/10.1002/mp.13274  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13274  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190731 
993 |a Article 
994 |a 2019 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 910000  |e 910000PK120866544  |k 0/910000/  |p 7  |y j 
998 |g 1031331298  |a Sawall, Stefan  |m 1031331298:Sawall, Stefan  |d 910000  |e 910000PS1031331298  |k 0/910000/  |p 6 
998 |g 1191843386  |a Vöth, Tim  |m 1191843386:Vöth, Tim  |d 130000  |e 130000PV1191843386  |k 0/130000/  |p 3 
998 |g 1191843181  |a Eulig, Elias  |m 1191843181:Eulig, Elias  |d 130000  |e 130000PE1191843181  |k 0/130000/  |p 2 
998 |g 1185600868  |a Maier, Joscha  |m 1185600868:Maier, Joscha  |d 130000  |e 130000PM1185600868  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1670315630  |e 3501641648 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"subtitle":"Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation","title_sort":"Real-time scatter estimation for medical CT using the deep scatter estimation","title":"Real-time scatter estimation for medical CT using the deep scatter estimation"}],"note":["published 26 November 2018","Gesehen am 31.07.2019"],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"family":"Maier","display":"Maier, Joscha","given":"Joscha","role":"aut"},{"given":"Elias","role":"aut","display":"Eulig, Elias","family":"Eulig"},{"family":"Vöth","display":"Vöth, Tim","given":"Tim","role":"aut"},{"family":"Sawall","display":"Sawall, Stefan","role":"aut","given":"Stefan"},{"family":"Kachelrieß","display":"Kachelrieß, Marc","role":"aut","given":"Marc"}],"id":{"doi":["10.1002/mp.13274"],"eki":["1670315630"]},"relHost":[{"origin":[{"publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedKey":"1974","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-"}],"note":["Gesehen am 01.08.2025"],"type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"Medical physics online"}],"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"part":{"issue":"1","volume":"46","extent":"12","pages":"238-249","text":"46(2019), 1, Seite 238-249","year":"2019"},"language":["eng"],"disp":"Real-time scatter estimation for medical CT using the deep scatter estimation Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncationMedical physics","id":{"eki":["265784867"],"issn":["2473-4209","1522-8541"],"zdb":["1466421-5"]},"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1974 -"],"recId":"265784867"}],"recId":"1670315630","physDesc":[{"extent":"12 S."}],"name":{"displayForm":["Joscha Maier, Elias Eulig, Tim Vöth, Michael Knaup, Jan Kuntz, Stefan Sawall, Marc Kachelrieß"]}} 
SRT |a MAIERJOSCHREALTIMESC2019