Extension of frozen-density embedding theory for non-variational embedded wavefunctions
In the original formulation, frozen-density embedding theory [T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050-8053 (1993); T. A. Wesołowski, Phys. Rev. A 77, 012504 (2008)] concerns multi-level simulation methods in which variational methods are used to obtain the embedded NA-electron wavef...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
29 March 2019
|
| In: |
The journal of chemical physics
Year: 2019, Jahrgang: 150, Heft: 12 |
| ISSN: | 1089-7690 |
| DOI: | 10.1063/1.5089233 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1063/1.5089233 Verlag, Volltext: https://aip.scitation.org/doi/10.1063/1.5089233 |
| Verfasserangaben: | Alexander Zech, Andreas Dreuw, and Tomasz A. Wesolowski |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1670348911 | ||
| 003 | DE-627 | ||
| 005 | 20230427055745.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190731s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1063/1.5089233 |2 doi | |
| 035 | |a (DE-627)1670348911 | ||
| 035 | |a (DE-599)KXP1670348911 | ||
| 035 | |a (OCoLC)1341235130 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Zech, Alexander |e VerfasserIn |0 (DE-588)1191860051 |0 (DE-627)1670348636 |4 aut | |
| 245 | 1 | 0 | |a Extension of frozen-density embedding theory for non-variational embedded wavefunctions |c Alexander Zech, Andreas Dreuw, and Tomasz A. Wesolowski |
| 264 | 1 | |c 29 March 2019 | |
| 300 | |a 6 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 31.07.2019 | ||
| 520 | |a In the original formulation, frozen-density embedding theory [T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050-8053 (1993); T. A. Wesołowski, Phys. Rev. A 77, 012504 (2008)] concerns multi-level simulation methods in which variational methods are used to obtain the embedded NA-electron wavefunction. In this work, an implicit density functional for the total energy is constructed and used to derive a general expression for the total energy in methods in which the embedded NA electrons are treated non-variationally. The formula is exact within linear expansion in density perturbations. Illustrative numerical examples are provided. | ||
| 700 | 1 | |a Dreuw, Andreas |d 1972- |e VerfasserIn |0 (DE-588)1060214598 |0 (DE-627)799305626 |0 (DE-576)416304974 |4 aut | |
| 700 | 1 | |a Wesolowski, Tomasz A. |e VerfasserIn |0 (DE-588)1036812561 |0 (DE-627)751701165 |0 (DE-576)386966109 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t The journal of chemical physics |d Melville, NY : American Institute of Physics, 1933 |g 150(2019,12) Artikel-Nummer 121101 |h Online-Ressource |w (DE-627)268760675 |w (DE-600)1473050-9 |w (DE-576)077610261 |x 1089-7690 |7 nnas |a Extension of frozen-density embedding theory for non-variational embedded wavefunctions |
| 773 | 1 | 8 | |g volume:150 |g year:2019 |g number:12 |g extent:6 |a Extension of frozen-density embedding theory for non-variational embedded wavefunctions |
| 856 | 4 | 0 | |u https://doi.org/10.1063/1.5089233 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://aip.scitation.org/doi/10.1063/1.5089233 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190731 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1060214598 |a Dreuw, Andreas |m 1060214598:Dreuw, Andreas |d 700000 |d 708000 |e 700000PD1060214598 |e 708000PD1060214598 |k 0/700000/ |k 1/700000/708000/ |p 2 | ||
| 999 | |a KXP-PPN1670348911 |e 3501786204 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Alexander Zech, Andreas Dreuw, and Tomasz A. Wesolowski"]},"title":[{"title":"Extension of frozen-density embedding theory for non-variational embedded wavefunctions","title_sort":"Extension of frozen-density embedding theory for non-variational embedded wavefunctions"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"29 March 2019"}],"recId":"1670348911","language":["eng"],"person":[{"roleDisplay":"VerfasserIn","given":"Alexander","role":"aut","display":"Zech, Alexander","family":"Zech"},{"roleDisplay":"VerfasserIn","display":"Dreuw, Andreas","family":"Dreuw","role":"aut","given":"Andreas"},{"display":"Wesolowski, Tomasz A.","family":"Wesolowski","role":"aut","given":"Tomasz A.","roleDisplay":"VerfasserIn"}],"relHost":[{"part":{"issue":"12","text":"150(2019,12) Artikel-Nummer 121101","year":"2019","extent":"6","volume":"150"},"id":{"issn":["1089-7690"],"zdb":["1473050-9"],"eki":["268760675"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 16.06.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1933 -"],"language":["eng"],"recId":"268760675","disp":"Extension of frozen-density embedding theory for non-variational embedded wavefunctionsThe journal of chemical physics","origin":[{"dateIssuedKey":"1933","publisher":"American Institute of Physics","publisherPlace":"Melville, NY","dateIssuedDisp":"1933-"}],"title":[{"subtitle":"bridges a gap between journals of physics and journals of chemistry","title":"The journal of chemical physics","title_sort":"journal of chemical physics"}],"name":{"displayForm":["American Institute of Physics"]}}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 31.07.2019"],"id":{"doi":["10.1063/1.5089233"],"eki":["1670348911"]},"physDesc":[{"extent":"6 S."}]} | ||
| SRT | |a ZECHALEXANEXTENSIONO2920 | ||