Bound state properties from the functional renormalization group

We discuss an approach for accessing bound state properties, like mass and decay width, of a theory within the functional renormalization group approach. An important cornerstone is the dynamical hadronization technique for resonant interaction channels. The general framework is exemplified and put...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alkofer, Reinhard (VerfasserIn) , Maas, Axel (VerfasserIn) , Mian, Walid Ahmed (VerfasserIn) , Mitter, Mario (VerfasserIn) , París-López, Jordi (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Wink, Nicolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 March 2019
In: Physical review
Year: 2019, Jahrgang: 99, Heft: 5
ISSN:2470-0029
DOI:10.1103/PhysRevD.99.054029
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevD.99.054029
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.99.054029
Volltext
Verfasserangaben:Reinhard Alkofer, Axel Maas, Walid Ahmed Mian, Mario Mitter, Jordi París-López, Jan M. Pawlowski, and Nicolas Wink
Beschreibung
Zusammenfassung:We discuss an approach for accessing bound state properties, like mass and decay width, of a theory within the functional renormalization group approach. An important cornerstone is the dynamical hadronization technique for resonant interaction channels. The general framework is exemplified and put to work within the two-flavor quark-meson model. This model provides a low-energy description of the dynamics of two-flavor QCD with quark and hadronic degrees of freedom. We compare explicitly the respective results for correlation functions and observables with first principle QCD results in a quantitative manner. This allows us to estimate the validity range of low energy effective models. We also present first results for pole masses and decay widths. Next steps involving real-time formulations of the functional renormalization group are discussed.
Beschreibung:Gesehen am 03.12.2020
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.99.054029