Total generalized variation for manifold-valued data

In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances t...

Full description

Saved in:
Bibliographic Details
Main Authors: Bredies, Kristian (Author) , Storath, Martin (Author)
Format: Article (Journal)
Language:English
Published: 05 July 2018
In: SIAM journal on imaging sciences
Year: 2018, Volume: 11, Issue: 3, Pages: 1785-1848
ISSN:1936-4954
DOI:10.1137/17M1147597
Online Access:Verlag, Volltext: https://doi.org/10.1137/17M1147597
Verlag, Volltext: https://epubs.siam.org/doi/10.1137/17M1147597
Get full text
Author Notes:K. Bredies, M. Holler, M. Storath, and A. Weinmann

MARC

LEADER 00000caa a2200000 c 4500
001 1670661423
003 DE-627
005 20220816203251.0
007 cr uuu---uuuuu
008 190806s2018 xx |||||o 00| ||eng c
024 7 |a 10.1137/17M1147597  |2 doi 
035 |a (DE-627)1670661423 
035 |a (DE-599)KXP1670661423 
035 |a (OCoLC)1341235016 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bredies, Kristian  |e VerfasserIn  |0 (DE-588)131737317  |0 (DE-627)707723442  |0 (DE-576)340518219  |4 aut 
245 1 0 |a Total generalized variation for manifold-valued data  |c K. Bredies, M. Holler, M. Storath, and A. Weinmann 
264 1 |c 05 July 2018 
300 |a 64 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.08.2019 
520 |a In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data. 
700 1 |a Storath, Martin  |e VerfasserIn  |0 (DE-588)1036903818  |0 (DE-627)751410578  |0 (DE-576)389559830  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on imaging sciences  |d Philadelphia, Pa. : SIAM, 2008  |g 11(2018), 3, Seite 1785-1848  |h Online-Ressource  |w (DE-627)561317917  |w (DE-600)2418483-4  |w (DE-576)279226195  |x 1936-4954  |7 nnas 
773 1 8 |g volume:11  |g year:2018  |g number:3  |g pages:1785-1848  |g extent:64  |a Total generalized variation for manifold-valued data 
856 4 0 |u https://doi.org/10.1137/17M1147597  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/17M1147597  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190806 
993 |a Article 
994 |a 2018 
998 |g 1036903818  |a Storath, Martin  |m 1036903818:Storath, Martin  |d 700000  |d 708070  |e 700000PS1036903818  |e 708070PS1036903818  |k 0/700000/  |k 1/700000/708070/  |p 3 
999 |a KXP-PPN1670661423  |e 3504657006 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 06.08.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1670661423","person":[{"display":"Bredies, Kristian","roleDisplay":"VerfasserIn","role":"aut","family":"Bredies","given":"Kristian"},{"given":"Martin","family":"Storath","role":"aut","display":"Storath, Martin","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Total generalized variation for manifold-valued data","title":"Total generalized variation for manifold-valued data"}],"physDesc":[{"extent":"64 S."}],"relHost":[{"pubHistory":["1.2008 -"],"titleAlt":[{"title":"Journal on imaging sciences"},{"title":"SIIMS"}],"part":{"text":"11(2018), 3, Seite 1785-1848","volume":"11","extent":"64","year":"2018","issue":"3","pages":"1785-1848"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on imaging sciences","note":["Gesehen am 05.03.20"],"recId":"561317917","language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Society for Industrial and Applied Mathematics"}],"title":[{"title_sort":"SIAM journal on imaging sciences","title":"SIAM journal on imaging sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2008","publisher":"SIAM","dateIssuedDisp":"2008-","publisherPlace":"Philadelphia, Pa."}],"id":{"zdb":["2418483-4"],"eki":["561317917"],"issn":["1936-4954"]},"name":{"displayForm":["Society for Industrial and Applied Mathematics"]}}],"name":{"displayForm":["K. Bredies, M. Holler, M. Storath, and A. Weinmann"]},"origin":[{"dateIssuedDisp":"05 July 2018","dateIssuedKey":"2018"}],"id":{"eki":["1670661423"],"doi":["10.1137/17M1147597"]}} 
SRT |a BREDIESKRITOTALGENER0520