Total generalized variation for manifold-valued data
In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances t...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
05 July 2018
|
| In: |
SIAM journal on imaging sciences
Year: 2018, Volume: 11, Issue: 3, Pages: 1785-1848 |
| ISSN: | 1936-4954 |
| DOI: | 10.1137/17M1147597 |
| Online Access: | Verlag, Volltext: https://doi.org/10.1137/17M1147597 Verlag, Volltext: https://epubs.siam.org/doi/10.1137/17M1147597 |
| Author Notes: | K. Bredies, M. Holler, M. Storath, and A. Weinmann |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1670661423 | ||
| 003 | DE-627 | ||
| 005 | 20220816203251.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190806s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/17M1147597 |2 doi | |
| 035 | |a (DE-627)1670661423 | ||
| 035 | |a (DE-599)KXP1670661423 | ||
| 035 | |a (OCoLC)1341235016 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Bredies, Kristian |e VerfasserIn |0 (DE-588)131737317 |0 (DE-627)707723442 |0 (DE-576)340518219 |4 aut | |
| 245 | 1 | 0 | |a Total generalized variation for manifold-valued data |c K. Bredies, M. Holler, M. Storath, and A. Weinmann |
| 264 | 1 | |c 05 July 2018 | |
| 300 | |a 64 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.08.2019 | ||
| 520 | |a In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data. | ||
| 700 | 1 | |a Storath, Martin |e VerfasserIn |0 (DE-588)1036903818 |0 (DE-627)751410578 |0 (DE-576)389559830 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on imaging sciences |d Philadelphia, Pa. : SIAM, 2008 |g 11(2018), 3, Seite 1785-1848 |h Online-Ressource |w (DE-627)561317917 |w (DE-600)2418483-4 |w (DE-576)279226195 |x 1936-4954 |7 nnas |
| 773 | 1 | 8 | |g volume:11 |g year:2018 |g number:3 |g pages:1785-1848 |g extent:64 |a Total generalized variation for manifold-valued data |
| 856 | 4 | 0 | |u https://doi.org/10.1137/17M1147597 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://epubs.siam.org/doi/10.1137/17M1147597 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190806 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1036903818 |a Storath, Martin |m 1036903818:Storath, Martin |d 700000 |d 708070 |e 700000PS1036903818 |e 708070PS1036903818 |k 0/700000/ |k 1/700000/708070/ |p 3 | ||
| 999 | |a KXP-PPN1670661423 |e 3504657006 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 06.08.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1670661423","person":[{"display":"Bredies, Kristian","roleDisplay":"VerfasserIn","role":"aut","family":"Bredies","given":"Kristian"},{"given":"Martin","family":"Storath","role":"aut","display":"Storath, Martin","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Total generalized variation for manifold-valued data","title":"Total generalized variation for manifold-valued data"}],"physDesc":[{"extent":"64 S."}],"relHost":[{"pubHistory":["1.2008 -"],"titleAlt":[{"title":"Journal on imaging sciences"},{"title":"SIIMS"}],"part":{"text":"11(2018), 3, Seite 1785-1848","volume":"11","extent":"64","year":"2018","issue":"3","pages":"1785-1848"},"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on imaging sciences","note":["Gesehen am 05.03.20"],"recId":"561317917","language":["eng"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Society for Industrial and Applied Mathematics"}],"title":[{"title_sort":"SIAM journal on imaging sciences","title":"SIAM journal on imaging sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"2008","publisher":"SIAM","dateIssuedDisp":"2008-","publisherPlace":"Philadelphia, Pa."}],"id":{"zdb":["2418483-4"],"eki":["561317917"],"issn":["1936-4954"]},"name":{"displayForm":["Society for Industrial and Applied Mathematics"]}}],"name":{"displayForm":["K. Bredies, M. Holler, M. Storath, and A. Weinmann"]},"origin":[{"dateIssuedDisp":"05 July 2018","dateIssuedKey":"2018"}],"id":{"eki":["1670661423"],"doi":["10.1137/17M1147597"]}} | ||
| SRT | |a BREDIESKRITOTALGENER0520 | ||