Total generalized variation for manifold-valued data

In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bredies, Kristian (VerfasserIn) , Storath, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 July 2018
In: SIAM journal on imaging sciences
Year: 2018, Jahrgang: 11, Heft: 3, Pages: 1785-1848
ISSN:1936-4954
DOI:10.1137/17M1147597
Online-Zugang:Verlag, Volltext: https://doi.org/10.1137/17M1147597
Verlag, Volltext: https://epubs.siam.org/doi/10.1137/17M1147597
Volltext
Verfasserangaben:K. Bredies, M. Holler, M. Storath, and A. Weinmann
Beschreibung
Zusammenfassung:In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data.
Beschreibung:Gesehen am 06.08.2019
Beschreibung:Online Resource
ISSN:1936-4954
DOI:10.1137/17M1147597