Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere

We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31-61, 2012] about the value of this term and the conjecture...

Full description

Saved in:
Bibliographic Details
Main Author: Bétermin, Laurent (Author)
Other Authors: Sandier, Etienne (Other)
Format: Article (Journal)
Language:English
Published: 2018
In: Constructive approximation
Year: 2016, Volume: 47, Issue: 1, Pages: 39-74
ISSN:1432-0940
DOI:10.1007/s00365-016-9357-z
Online Access:Verlag, Volltext: https://doi.org/10.1007/s00365-016-9357-z
Get full text
Author Notes:Laurent Bétermin, Etienne Sandier

MARC

LEADER 00000caa a2200000 c 4500
001 1671396383
003 DE-627
005 20220816210004.0
007 cr uuu---uuuuu
008 190814r20182016xx |||||o 00| ||eng c
024 7 |a 10.1007/s00365-016-9357-z  |2 doi 
035 |a (DE-627)1671396383 
035 |a (DE-599)KXP1671396383 
035 |a (OCoLC)1341235686 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bétermin, Laurent  |d 1983-  |e VerfasserIn  |0 (DE-588)1160766312  |0 (DE-627)1024197794  |0 (DE-576)506179990  |4 aut 
245 1 0 |a Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere  |c Laurent Bétermin, Etienne Sandier 
264 1 |c 2018 
300 |a 36 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.08.2019 
500 |a Published online: 15 September 2016 
520 |a We study the Hamiltonian of a two-dimensional log-gas with a confining potential V satisfying the weak growth assumption. Finally, we prove the equivalence between the conjecture of Brauchart Brauchart, Hardin and Saff [Contemp. Math., 578:31-61, 2012] about the value of this term and the conjecture of Sandier and Serfaty [Commun Math Phys. 313(3):635-743, 2012] about the minimality of the triangular lattice for a “renormalized energy” W among configurations of fixed asymptotic density. 
534 |c 2016 
650 4 |a 31C20 
650 4 |a 82B05 
650 4 |a 82B21 
650 4 |a Abrikosov lattices 
650 4 |a Coulomb gas 
650 4 |a Crystallization 
650 4 |a Gamma-convergence 
650 4 |a Ginzburg–Landau 
650 4 |a Logarithmic energy 
650 4 |a Logarithmic potential theory 
650 4 |a Number theory 
650 4 |a Primary 52A40 
650 4 |a Renormalized energy 
650 4 |a Secondary 41A60 
650 4 |a Triangular lattice 
650 4 |a Vortices 
650 4 |a Weak confinement 
700 1 |a Sandier, Etienne  |0 (DE-588)133106594  |0 (DE-627)654711550  |0 (DE-576)338809902  |4 oth 
773 0 8 |i Enthalten in  |t Constructive approximation  |d New York, NY : Springer, 1985  |g 47(2018), 1, Seite 39-74  |h Online-Ressource  |w (DE-627)265505518  |w (DE-600)1463844-7  |w (DE-576)078589843  |x 1432-0940  |7 nnas  |a Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere 
773 1 8 |g volume:47  |g year:2018  |g number:1  |g pages:39-74  |g extent:36  |a Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere 
856 4 0 |u https://doi.org/10.1007/s00365-016-9357-z  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190814 
993 |a Article 
994 |a 2018 
998 |g 1160766312  |a Bétermin, Laurent  |m 1160766312:Bétermin, Laurent  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PB1160766312  |e 110200PB1160766312  |e 110000PB1160766312  |e 110400PB1160766312  |e 700000PB1160766312  |e 708000PB1160766312  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1671396383  |e 3507011034 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"265505518","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.08.10"],"disp":"Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphereConstructive approximation","part":{"extent":"36","volume":"47","text":"47(2018), 1, Seite 39-74","pages":"39-74","issue":"1","year":"2018"},"pubHistory":["1.1985 -"],"title":[{"title_sort":"Constructive approximation","title":"Constructive approximation","subtitle":"an international journal for approximations and expansions"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1463844-7"],"eki":["265505518"],"issn":["1432-0940"]},"origin":[{"publisherPlace":"New York, NY ; Berlin ; Heidelberg [u.a.]","publisher":"Springer","dateIssuedKey":"1985","dateIssuedDisp":"1985-"}]}],"physDesc":[{"extent":"36 S."}],"id":{"doi":["10.1007/s00365-016-9357-z"],"eki":["1671396383"]},"origin":[{"dateIssuedDisp":"2018","dateIssuedKey":"2018"}],"name":{"displayForm":["Laurent Bétermin, Etienne Sandier"]},"language":["eng"],"recId":"1671396383","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 14.08.2019","Published online: 15 September 2016"],"title":[{"title_sort":"Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere","title":"Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere"}],"person":[{"roleDisplay":"VerfasserIn","display":"Bétermin, Laurent","role":"aut","family":"Bétermin","given":"Laurent"},{"family":"Sandier","given":"Etienne","display":"Sandier, Etienne","role":"oth"}]} 
SRT |a BETERMINLARENORMALIZ2018