Steady states of FitzHugh-Nagumo system with non-diffusive activator and diffusive inhibitor

In this paper, we consider a diffusion equation coupled to an ordinary differential equation with FitzHugh-Nagumo type nonlinearity. We construct continuous spatially heterogeneous steady states near, as well as far from, constant steady states and show that they are all unstable. In addition, we co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Ying (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Takagi, Izumi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 June 2019
In: Tōhoku mathematical journal
Year: 2019, Jahrgang: 71, Heft: 2, Pages: 243-279
ISSN:1881-2015
DOI:10.2748/tmj/1561082598
Online-Zugang:Verlag, Volltext: https://doi.org/10.2748/tmj/1561082598
Verlag, Volltext: https://projecteuclid.org/euclid.tmj/1561082598
Volltext
Verfasserangaben:Ying Li, Anna Marciniak-Czochra, Izumi Takagi, and Boying Wu
Beschreibung
Zusammenfassung:In this paper, we consider a diffusion equation coupled to an ordinary differential equation with FitzHugh-Nagumo type nonlinearity. We construct continuous spatially heterogeneous steady states near, as well as far from, constant steady states and show that they are all unstable. In addition, we construct various types of steady states with jump discontinuities and prove that they are stable in a weak sense defined by Weinberger.The results are quite different from those for classical reaction-diffusion systems where all species diffuse.
Beschreibung:Gesehen am 26.08.2019
Beschreibung:Online Resource
ISSN:1881-2015
DOI:10.2748/tmj/1561082598