Fast multivariate log-concave density estimation

A novel computational approach to log-concave density estimation is proposed. Previous approaches utilize the piecewise-affine parametrization of the density induced by the given sample set. The number of parameters as well as non-smooth subgradient-based convex optimization for determining the maxi...

Full description

Saved in:
Bibliographic Details
Main Authors: Rathke, Fabian (Author) , Schnörr, Christoph (Author)
Format: Article (Journal)
Language:English
Published: 30 May 2019
In: Computational statistics & data analysis
Year: 2019, Volume: 140, Pages: 41-58
DOI:10.1016/j.csda.2019.04.005
Online Access:Verlag, Volltext: https://doi.org/10.1016/j.csda.2019.04.005
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0167947319300891
Get full text
Author Notes:Fabian Rathke, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 167219282X
003 DE-627
005 20240323101249.0
007 cr uuu---uuuuu
008 190827s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.csda.2019.04.005  |2 doi 
035 |a (DE-627)167219282X 
035 |a (DE-599)KXP167219282X 
035 |a (OCoLC)1341238575 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rathke, Fabian  |e VerfasserIn  |0 (DE-588)1066501742  |0 (DE-627)817655824  |0 (DE-576)42601684X  |4 aut 
245 1 0 |a Fast multivariate log-concave density estimation  |c Fabian Rathke, Christoph Schnörr 
264 1 |c 30 May 2019 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.08.2019 
520 |a A novel computational approach to log-concave density estimation is proposed. Previous approaches utilize the piecewise-affine parametrization of the density induced by the given sample set. The number of parameters as well as non-smooth subgradient-based convex optimization for determining the maximum likelihood density estimate cause long runtimes for dimensions d≥2 and large sample sets. The presented approach is based on mildly non-convex smooth approximations of the objective function and sparse, adaptive piecewise-affine density parametrization. Established memory-efficient numerical optimization techniques enable to process larger data sets for dimensions d≥2. While there is no guarantee that the algorithm returns the maximum likelihood estimate for every problem instance, we provide comprehensive numerical evidence that it does yield near-optimal results after significantly shorter runtimes. For example, 10000 samples in R2 are processed in two seconds, rather than in ≈14 hours required by the previous approach to terminate. For higher dimensions, density estimation becomes tractable as well: Processing 10000 samples in R6 requires 35 min. The software is publicly available as CRAN R package fmlogcondens. 
650 4 |a Adaptive piecewise-affine parametrization 
650 4 |a Log-concavity 
650 4 |a Maximum likelihood estimation 
650 4 |a Nonparametric density estimation 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Computational statistics & data analysis  |d Amsterdam : Elsevier Science, 1983  |g 140(2019), Seite 41-58  |h Online-Ressource  |w (DE-627)27093815X  |w (DE-600)1478763-5  |w (DE-576)081952511  |7 nnas  |a Fast multivariate log-concave density estimation 
773 1 8 |g volume:140  |g year:2019  |g pages:41-58  |g extent:18  |a Fast multivariate log-concave density estimation 
856 4 0 |u https://doi.org/10.1016/j.csda.2019.04.005  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0167947319300891  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190827 
993 |a Article 
994 |a 2019 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |e 700000PS1023033348  |e 708000PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 1066501742  |a Rathke, Fabian  |m 1066501742:Rathke, Fabian  |d 700000  |d 708000  |d 700000  |d 708070  |e 700000PR1066501742  |e 708000PR1066501742  |e 700000PR1066501742  |e 708070PR1066501742  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/708070/  |p 1  |x j 
999 |a KXP-PPN167219282X  |e 3509089677 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Fabian","role":"aut","family":"Rathke","display":"Rathke, Fabian"},{"display":"Schnörr, Christoph","family":"Schnörr","given":"Christoph","role":"aut"}],"language":["eng"],"note":["Gesehen am 27.08.2019"],"origin":[{"dateIssuedDisp":"30 May 2019","dateIssuedKey":"2019"}],"title":[{"title":"Fast multivariate log-concave density estimation","title_sort":"Fast multivariate log-concave density estimation"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"167219282X","name":{"displayForm":["Fabian Rathke, Christoph Schnörr"]},"physDesc":[{"extent":"18 S."}],"relHost":[{"disp":"Fast multivariate log-concave density estimationComputational statistics & data analysis","part":{"extent":"18","volume":"140","year":"2019","text":"140(2019), Seite 41-58","pages":"41-58"},"note":["Gesehen am 06.01.2021"],"origin":[{"dateIssuedDisp":"1983-","publisherPlace":"Amsterdam","dateIssuedKey":"1983","publisher":"Elsevier Science"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Computational statistics & data analysis","title_sort":"Computational statistics & data analysis"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"27093815X","pubHistory":["1.1983 - 56.2012; Vol. 57.2013 -"],"id":{"eki":["27093815X"],"zdb":["1478763-5"]}}],"id":{"doi":["10.1016/j.csda.2019.04.005"],"eki":["167219282X"]}} 
SRT |a RATHKEFABIFASTMULTIV3020