KGE algorithms

An updated method for link prediction that uses a regularization factor that models relation argument types. Abstract (Kotnis and Nastase, 2017): Learning relations based on evidence from knowledge repositories relies on processing the available relation instances. Knowledge repositories are not ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kotnis, Bhushan (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2019-08-19
DOI:10.11588/data/CSXYSS
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/CSXYSS
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/CSXYSS
Volltext
Verfasserangaben:Bhushan Kotnis

MARC

LEADER 00000cmi a2200000 c 4500
001 1675675104
003 DE-627
005 20250608224648.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 190902c20199999xx |o | eng c
024 7 |a 10.11588/data/CSXYSS  |2 doi 
035 |a (DE-627)1675675104 
035 |a (DE-599)KXP1675675104 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kotnis, Bhushan  |e VerfasserIn  |0 (DE-588)1190653478  |0 (DE-627)1669204197  |4 aut 
245 1 0 |a KGE algorithms  |c Bhushan Kotnis 
264 1 |a Heidelberg  |b Universität  |c 2019-08-19 
300 |a 1 Online-Ressource (1 File) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Kind of data: program source code 
500 |a Gesehen am 02.09.2019 
520 |a  An updated method for link prediction that uses a regularization factor that models relation argument types. Abstract (Kotnis and Nastase, 2017): Learning relations based on evidence from knowledge repositories relies on processing the available relation instances. Knowledge repositories are not balanced in terms of relations or entities – there are relations with less than 10 but also thousands of instances, and entities involved in less than 10 but also thousands of relations. Many relations, however, have clear domain and range, which we hypothesize could help learn a better, more generalizing, model. We include such information in the RESCAL model in the form of a regularization factor added to the loss function that takes into account the types (categories) of the entities that appear as arguments to relations in the knowledge base. Tested on Freebase, a frequently used benchmarking dataset for link/path predicting tasks, we note increased performance compared to the baseline model in terms of mean reciprocal rank and hitsN, N = 1, 3, 10. Furthermore, we discover scenarios that significantly impact the effectiveness of the type regularizer. 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
787 0 8 |i Forschungsdaten zu  |a Kotnis, Bhushan  |t Learning knowledge graph embeddings with type regularizer  |d 2018  |w (DE-627)1675677042 
787 0 8 |i Forschungsdaten zu  |a Kotnis, Bhushan  |t Analysis of the impact of negative sampling on link prediction in knowledge graphs  |d 2018  |w (DE-627)1675681244 
856 4 0 |u https://doi.org/10.11588/data/CSXYSS  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/CSXYSS  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20190902 
993 |a ResearchData 
994 |a 2019 
998 |g 1190653478  |a Kotnis, Bhushan  |m 1190653478:Kotnis, Bhushan  |p 1  |x j  |y j 
999 |a KXP-PPN1675675104  |e 3510845633 
BIB |a Y 
JSO |a {"recId":"1675675104","language":["eng"],"note":["Kind of data: program source code","Gesehen am 02.09.2019"],"type":{"media":"Online-Ressource","bibl":"dataset"},"physDesc":[{"extent":"1 Online-Ressource (1 File)"}],"name":{"displayForm":["Bhushan Kotnis"]},"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Kotnis, Bhushan","given":"Bhushan","family":"Kotnis"}],"id":{"doi":["10.11588/data/CSXYSS"],"eki":["1675675104"]},"title":[{"title":"KGE algorithms","title_sort":"KGE algorithms"}],"origin":[{"dateIssuedDisp":"2019-08-19","publisher":"Universität","dateIssuedKey":"2019","publisherPlace":"Heidelberg"}]} 
SRT |a KOTNISBHUSKGEALGORIT2019