Learning knowledge graph embeddings with type regularizer

Learning relations based on evidence from knowledge bases relies on processing the available relation instances. Many relations, however, have clear domain and range, which we hypothesize could help learn a better, more generalizing, model. We include such information in the RESCAL model in the form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kotnis, Bhushan (VerfasserIn) , Nastase, Vivi (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2 Mar 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1706.09278
Volltext
Verfasserangaben:Bhushan Kotnis and Vivi Nastase

MARC

LEADER 00000caa a2200000 c 4500
001 1675677042
003 DE-627
005 20220816215716.0
007 cr uuu---uuuuu
008 190902s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1675677042 
035 |a (DE-599)KXP1675677042 
035 |a (OCoLC)1341238832 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kotnis, Bhushan  |e VerfasserIn  |0 (DE-588)1190653478  |0 (DE-627)1669204197  |4 aut 
245 1 0 |a Learning knowledge graph embeddings with type regularizer  |c Bhushan Kotnis and Vivi Nastase 
264 1 |c 2 Mar 2018 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.09.2019 
520 |a Learning relations based on evidence from knowledge bases relies on processing the available relation instances. Many relations, however, have clear domain and range, which we hypothesize could help learn a better, more generalizing, model. We include such information in the RESCAL model in the form of a regularization factor added to the loss function that takes into account the types (categories) of the entities that appear as arguments to relations in the knowledge base. We note increased performance compared to the baseline model in terms of mean reciprocal rank and hitsN, N = 1, 3, 10. Furthermore, we discover scenarios that significantly impact the effectiveness of the type regularizer. 
650 4 |a Computer Science - Artificial Intelligence 
700 1 |a Nastase, Vivi  |d 1975-  |e VerfasserIn  |0 (DE-588)1041331800  |0 (DE-627)76701880X  |0 (DE-576)393039927  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018)  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Learning knowledge graph embeddings with type regularizer 
773 1 8 |g year:2018  |g extent:6  |a Learning knowledge graph embeddings with type regularizer 
787 0 8 |i Forschungsdaten  |a Kotnis, Bhushan  |t KGE algorithms  |d Heidelberg : Universität, 2019  |h 1 Online-Ressource (1 File)  |w (DE-627)1675675104 
856 4 0 |u http://arxiv.org/abs/1706.09278  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190902 
993 |a Article 
994 |a 2018 
998 |g 1041331800  |a Nastase, Vivi  |m 1041331800:Nastase, Vivi  |d 90000  |d 90500  |e 90000PN1041331800  |e 90500PN1041331800  |k 0/90000/  |k 1/90000/90500/  |p 2  |y j 
998 |g 1190653478  |a Kotnis, Bhushan  |m 1190653478:Kotnis, Bhushan  |d 90000  |d 90500  |e 90000PK1190653478  |e 90500PK1190653478  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j 
999 |a KXP-PPN1675677042  |e 351084985X 
BIB |a Y 
JSO |a {"title":[{"title_sort":"Learning knowledge graph embeddings with type regularizer","title":"Learning knowledge graph embeddings with type regularizer"}],"person":[{"display":"Kotnis, Bhushan","roleDisplay":"VerfasserIn","role":"aut","family":"Kotnis","given":"Bhushan"},{"given":"Vivi","family":"Nastase","role":"aut","roleDisplay":"VerfasserIn","display":"Nastase, Vivi"}],"language":["eng"],"recId":"1675677042","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 02.09.2019"],"id":{"eki":["1675677042"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2 Mar 2018"}],"name":{"displayForm":["Bhushan Kotnis and Vivi Nastase"]},"relHost":[{"part":{"year":"2018","text":"(2018)","extent":"6"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Learning knowledge graph embeddings with type regularizerArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"physDesc":[{"extent":"6 S."}]} 
SRT |a KOTNISBHUSLEARNINGKN2201