Negative sampling for learning knowledge graph embeddings

Reimplementation of four KG factorization methods and six negative sampling methods. Abstract: Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kotnis, Bhushan (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2019-08-19
DOI:10.11588/data/YYULL2
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/YYULL2
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/YYULL2
Volltext
Verfasserangaben:Bhushan Kotnis

MARC

LEADER 00000cmi a2200000 c 4500
001 1675680590
003 DE-627
005 20191114161439.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 190902c20199999xx |o | eng c
024 7 |a 10.11588/data/YYULL2  |2 doi 
035 |a (DE-627)1675680590 
035 |a (DE-599)KXP1675680590 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kotnis, Bhushan  |e VerfasserIn  |0 (DE-588)1190653478  |0 (DE-627)1669204197  |4 aut 
245 1 0 |a Negative sampling for learning knowledge graph embeddings  |c Bhushan Kotnis 
264 1 |a Heidelberg  |b Universität  |c 2019-08-19 
300 |a 1 Online-Ressource (1 File) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Kind of data: Program source code 
500 |a Gesehen am 02.09.2019 
520 |a Reimplementation of four KG factorization methods and six negative sampling methods. Abstract: Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensional vector spaces, that can be used to induce new edges in the graph, i.e., link prediction in knowledge graphs. Learning these representations relies on contrasting positive instances with negative ones. Knowledge graphs include only positive relation instances, leaving the door open for a variety of methods for selecting negative examples. In this paper we present an empirical study on the impact of negative sampling on the learned embeddings, assessed through the task of link prediction. We use state-of-the-art knowledge graph embeddings -- \rescal , TransE, DistMult and ComplEX -- and evaluate on benchmark datasets -- FB15k and WN18. We compare well known methods for negative sampling and additionally propose embedding based sampling methods. We note a marked difference in the impact of these sampling methods on the two datasets, with the "traditional" corrupting positives method leading to best results on WN18, while embedding based methods benefiting the task on FB15k. 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
787 0 8 |i Forschungsdaten zu  |a Kotnis, Bhushan  |t Analysis of the impact of negative sampling on link prediction in knowledge graphs  |d 2018  |w (DE-627)1675681244 
856 4 0 |u https://doi.org/10.11588/data/YYULL2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/YYULL2  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20190902 
993 |a ResearchData 
994 |a 2019 
998 |g 1190653478  |a Kotnis, Bhushan  |m 1190653478:Kotnis, Bhushan  |p 1  |x j  |y j 
999 |a KXP-PPN1675680590  |e 3510858743 
BIB |a Y 
JSO |a {"id":{"eki":["1675680590"],"doi":["10.11588/data/YYULL2"]},"title":[{"title_sort":"Negative sampling for learning knowledge graph embeddings","title":"Negative sampling for learning knowledge graph embeddings"}],"origin":[{"publisherPlace":"Heidelberg","dateIssuedKey":"2019","publisher":"Universität","dateIssuedDisp":"2019-08-19"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Kotnis, Bhushan","given":"Bhushan","family":"Kotnis"}],"name":{"displayForm":["Bhushan Kotnis"]},"recId":"1675680590","language":["eng"],"note":["Kind of data: Program source code","Gesehen am 02.09.2019"],"type":{"media":"Online-Ressource","bibl":"dataset"},"physDesc":[{"extent":"1 Online-Ressource (1 File)"}]} 
SRT |a KOTNISBHUSNEGATIVESA2019