Analysis of the impact of negative sampling on link prediction in knowledge graphs

Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kotnis, Bhushan (VerfasserIn) , Nastase, Vivi (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2 Mar 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1708.06816
Volltext
Verfasserangaben:Bhushan Kotnis and Vivi Nastase

MARC

LEADER 00000caa a2200000 c 4500
001 1675681244
003 DE-627
005 20250605101659.0
007 cr uuu---uuuuu
008 190902s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1675681244 
035 |a (DE-599)KXP1675681244 
035 |a (OCoLC)1341241576 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Kotnis, Bhushan  |e VerfasserIn  |0 (DE-588)1190653478  |0 (DE-627)1669204197  |4 aut 
245 1 0 |a Analysis of the impact of negative sampling on link prediction in knowledge graphs  |c Bhushan Kotnis and Vivi Nastase 
264 1 |c 2 Mar 2018 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.09.2019 
520 |a Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensional vector spaces, that can be used to induce new edges in the graph, i.e., link prediction in knowledge graphs. Learning these representations relies on contrasting positive instances with negative ones. Knowledge graphs include only positive relation instances, leaving the door open for a variety of methods for selecting negative examples. In this paper we present an empirical study on the impact of negative sampling on the learned embeddings, assessed through the task of link prediction. We use state-of-the-art knowledge graph embeddings -- \rescal , TransE, DistMult and ComplEX -- and evaluate on benchmark datasets -- FB15k and WN18. We compare well known methods for negative sampling and additionally propose embedding based sampling methods. We note a marked difference in the impact of these sampling methods on the two datasets, with the "traditional" corrupting positives method leading to best results on WN18, while embedding based methods benefiting the task on FB15k. 
650 4 |a Computer Science - Artificial Intelligence 
700 1 |a Nastase, Vivi  |d 1975-  |e VerfasserIn  |0 (DE-588)1041331800  |0 (DE-627)76701880X  |0 (DE-576)393039927  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018)  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Analysis of the impact of negative sampling on link prediction in knowledge graphs 
773 1 8 |g year:2018  |g extent:14  |a Analysis of the impact of negative sampling on link prediction in knowledge graphs 
787 0 8 |i Forschungsdaten  |a Kotnis, Bhushan  |t KGE algorithms  |d Heidelberg : Universität, 2019  |h 1 Online-Ressource (1 File)  |w (DE-627)1675675104 
787 0 8 |i Forschungsdaten  |a Kotnis, Bhushan  |t Negative sampling for learning knowledge graph embeddings  |d Heidelberg : Universität, 2019  |h 1 Online-Ressource (1 File)  |w (DE-627)1675680590 
856 4 0 |u http://arxiv.org/abs/1708.06816  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190902 
993 |a Article 
994 |a 2018 
998 |g 1041331800  |a Nastase, Vivi  |m 1041331800:Nastase, Vivi  |d 90000  |d 90500  |e 90000PN1041331800  |e 90500PN1041331800  |k 0/90000/  |k 1/90000/90500/  |p 2  |y j 
998 |g 1190653478  |a Kotnis, Bhushan  |m 1190653478:Kotnis, Bhushan  |d 90000  |d 90500  |e 90000PK1190653478  |e 90500PK1190653478  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j 
999 |a KXP-PPN1675681244  |e 3510860551 
BIB |a Y 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Kotnis, Bhushan","role":"aut","family":"Kotnis","given":"Bhushan"},{"given":"Vivi","family":"Nastase","role":"aut","roleDisplay":"VerfasserIn","display":"Nastase, Vivi"}],"title":[{"title":"Analysis of the impact of negative sampling on link prediction in knowledge graphs","title_sort":"Analysis of the impact of negative sampling on link prediction in knowledge graphs"}],"note":["Gesehen am 02.09.2019"],"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1675681244","language":["eng"],"name":{"displayForm":["Bhushan Kotnis and Vivi Nastase"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2 Mar 2018"}],"id":{"eki":["1675681244"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"Analysis of the impact of negative sampling on link prediction in knowledge graphsArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2018","text":"(2018)","extent":"14"}}]} 
SRT |a KOTNISBHUSANALYSISOF2201