Inducing a lexicon of abusive words: a feature-based approach

We address the detection of abusive words. The task is to identify such words among a set of negative polar expressions. We propose novel features employing information from both corpora and lexical resources. These features are calibrated on a small manually annotated base lexicon which we use to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wiegand, Michael (VerfasserIn) , Ruppenhofer, Josef (VerfasserIn) , Schmidt, Anna (VerfasserIn) , Greenberg, Clayton (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2018
In: The 2018 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - proceedings of the conference
Year: 2018, Pages: 1046-1056
DOI:10.18653/v1/N18-1095
Online-Zugang:Verlag, Volltext: https://doi.org/10.18653/v1/N18-1095
Verlag, Volltext: https://www.aclweb.org/anthology/N18-1095
Volltext
Verfasserangaben:Michael Wiegand, Josef Ruppenhofer, Anna Schmidt, Clayton Greenberg
Beschreibung
Zusammenfassung:We address the detection of abusive words. The task is to identify such words among a set of negative polar expressions. We propose novel features employing information from both corpora and lexical resources. These features are calibrated on a small manually annotated base lexicon which we use to produce a large lexicon. We show that the word-level information we learn cannot be equally derived from a large dataset of annotated microposts. We demonstrate the effectiveness of our (domain-independent) lexicon in the cross-domain detection of abusive microposts.
Beschreibung:Gesehen am 04.09.2019
Beschreibung:Online Resource
DOI:10.18653/v1/N18-1095