Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks

Purpose Optical imaging is evolving as a key technique for advanced sensing in the operating room. Recent research has shown that machine learning algorithms can be used to address the inverse problem...

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adler, Tim (VerfasserIn) , Ardizzone, Lynton (VerfasserIn) , Kruse, Jakob (VerfasserIn) , Rother, Carsten (VerfasserIn) , Köthe, Ullrich (VerfasserIn) , Maier-Hein, Lena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 March 2019
In: International journal of computer-assisted language learning and teaching
Year: 2019, Jahrgang: 14, Heft: 6, Pages: 997-1007
ISSN:2155-7101
DOI:10.1007/s11548-019-01939-9
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s11548-019-01939-9
Verlag, Volltext: https://link.springer.com/article/10.1007/s11548-019-01939-9
Volltext
Verfasserangaben:Tim J. Adler, Lynton Ardizzone, Anant Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirchner, Sebastian Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, Lena Maier-Hein
Beschreibung
Zusammenfassung:Purpose Optical imaging is evolving as a key technique for advanced sensing in the operating room. Recent research has shown that machine learning algorithms can be used to address the inverse problem...
Beschreibung:Gesehen am 17.09.2019
Beschreibung:Online Resource
ISSN:2155-7101
DOI:10.1007/s11548-019-01939-9