Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images

Background - The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-26% of discordance for classifying a benign nevus...

Full description

Saved in:
Bibliographic Details
Main Authors: Hekler, Achim (Author) , Enk, Alexander (Author) , Brinker, Titus Josef (Author)
Format: Article (Journal)
Language:English
Published: 18 July 2019
In: European journal of cancer
Year: 2019, Volume: 118, Pages: 91-96
ISSN:1879-0852
DOI:10.1016/j.ejca.2019.06.012
Online Access:Verlag, Volltext: https://doi.org/10.1016/j.ejca.2019.06.012
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0959804919303806
Get full text
Author Notes:Achim Hekler, Jochen S. Utikal, Alexander H. Enk, Wiebke Solass, Max Schmitt, Joachim Klode, Dirk Schadendorf, Wiebke Sondermann, Cindy Franklin, Felix Bestvater, Michael J. Flaig, Dieter Krahl, Christof von Kalle, Stefan Fröhling, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1677529520
003 DE-627
005 20240323101300.0
007 cr uuu---uuuuu
008 190923s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2019.06.012  |2 doi 
035 |a (DE-627)1677529520 
035 |a (DE-599)KXP1677529520 
035 |a (OCoLC)1341244262 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Hekler, Achim  |e VerfasserIn  |4 aut 
245 1 0 |a Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images  |c Achim Hekler, Jochen S. Utikal, Alexander H. Enk, Wiebke Solass, Max Schmitt, Joachim Klode, Dirk Schadendorf, Wiebke Sondermann, Cindy Franklin, Felix Bestvater, Michael J. Flaig, Dieter Krahl, Christof von Kalle, Stefan Fröhling, Titus J. Brinker 
264 1 |c 18 July 2019 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.09.2019 
520 |a Background - The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-26% of discordance for classifying a benign nevus versus malignant melanoma. A recent study indicated the potential of deep learning to lower these discordances. However, the performance of deep learning in classifying histopathologic melanoma images was never compared directly to human experts. The aim of this study is to perform such a first direct comparison. - Methods - A total of 695 lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi/345 melanoma). Only the haematoxylin & eosin (H&E) slides of these lesions were digitalised via a slide scanner and then randomly cropped. A total of 595 of the resulting images were used to train a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison to 11 histopathologists. Three combined McNemar tests comparing the results of the CNNs test runs in terms of sensitivity, specificity and accuracy were predefined to test for significance (p < 0.05). - Findings - The CNN achieved a mean sensitivity/specificity/accuracy of 76%/60%/68% over 11 test runs. In comparison, the 11 pathologists achieved a mean sensitivity/specificity/accuracy of 51.8%/66.5%/59.2%. Thus, the CNN was significantly (p = 0.016) superior in classifying the cropped images. - Interpretation - With limited image information available, a CNN was able to outperform 11 histopathologists in the classification of histopathological melanoma images and thus shows promise to assist human melanoma diagnoses. 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Histopathology 
650 4 |a Melanoma 
650 4 |a Pathology 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 118(2019), Seite 91-96  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images 
773 1 8 |g volume:118  |g year:2019  |g pages:91-96  |g extent:6  |a Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images 
856 4 0 |u https://doi.org/10.1016/j.ejca.2019.06.012  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0959804919303806  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190923 
993 |a Article 
994 |a 2019 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 15  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 3 
999 |a KXP-PPN1677529520  |e 351725472X 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title":"Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images","title_sort":"Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1677529520","origin":[{"dateIssuedDisp":"18 July 2019","dateIssuedKey":"2019"}],"relHost":[{"title":[{"title":"European journal of cancer","title_sort":"European journal of cancer"}],"language":["eng"],"part":{"pages":"91-96","extent":"6","volume":"118","text":"118(2019), Seite 91-96","year":"2019"},"pubHistory":["28.1992 -"],"id":{"eki":["266883400"],"zdb":["1468190-0"],"issn":["1879-0852"]},"disp":"Deep learning outperformed 11 pathologists in the classification of histopathological melanoma imagesEuropean journal of cancer","corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","publisher":"Elsevier ; Pergamon Press","dateIssuedDisp":"1992-"}],"recId":"266883400","type":{"media":"Online-Ressource","bibl":"periodical"},"titleAlt":[{"title":"EJC online"}]}],"note":["Gesehen am 23.09.2019"],"id":{"eki":["1677529520"],"doi":["10.1016/j.ejca.2019.06.012"]},"physDesc":[{"extent":"6 S."}],"name":{"displayForm":["Achim Hekler, Jochen S. Utikal, Alexander H. Enk, Wiebke Solass, Max Schmitt, Joachim Klode, Dirk Schadendorf, Wiebke Sondermann, Cindy Franklin, Felix Bestvater, Michael J. Flaig, Dieter Krahl, Christof von Kalle, Stefan Fröhling, Titus J. Brinker"]},"person":[{"display":"Hekler, Achim","given":"Achim","role":"aut","family":"Hekler"},{"family":"Enk","role":"aut","given":"Alexander","display":"Enk, Alexander"},{"display":"Brinker, Titus Josef","role":"aut","given":"Titus Josef","family":"Brinker"}]} 
SRT |a HEKLERACHIDEEPLEARNI1820