Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veta, Mitko (VerfasserIn) , Wollmann, Thomas (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 February 2019
In: Medical image analysis
Year: 2019, Jahrgang: 54, Pages: 111-121
ISSN:1361-8423
DOI:10.1016/j.media.2019.02.012
Online-Zugang:Verlag, Pay-per-use, Volltext: https://doi.org/10.1016/j.media.2019.02.012
Verlag, Pay-per-use: http://www.sciencedirect.com/science/article/pii/S1361841518305231
Volltext
Verfasserangaben:Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P.W. Pluim

MARC

LEADER 00000caa a2200000 c 4500
001 1677940425
003 DE-627
005 20240323101301.0
007 cr uuu---uuuuu
008 190930s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2019.02.012  |2 doi 
035 |a (DE-627)1677940425 
035 |a (DE-599)KXP1677940425 
035 |a (OCoLC)1341244768 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Veta, Mitko  |e VerfasserIn  |0 (DE-588)1196053014  |0 (DE-627)1677942347  |4 aut 
245 1 0 |a Predicting breast tumor proliferation from whole-slide images  |b the TUPAC16 challenge  |c Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P.W. Pluim 
264 1 |c 27 February 2019 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.09.2019 
520 |a Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r=0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task. 
650 4 |a Breast cancer 
650 4 |a Cancer prognostication 
650 4 |a Deep learning 
650 4 |a Tumor proliferation 
700 1 |a Wollmann, Thomas  |d 1990-  |e VerfasserIn  |0 (DE-588)116966895X  |0 (DE-627)1035271516  |0 (DE-576)512181942  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 54(2019), Seite 111-121  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Predicting breast tumor proliferation from whole-slide images the TUPAC16 challenge 
773 1 8 |g volume:54  |g year:2019  |g pages:111-121  |g extent:11  |a Predicting breast tumor proliferation from whole-slide images the TUPAC16 challenge 
856 4 0 |u https://doi.org/10.1016/j.media.2019.02.012  |x Verlag  |x Resolving-System  |z Pay-per-use  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1361841518305231  |x Verlag  |z Pay-per-use 
951 |a AR 
992 |a 20190930 
993 |a Article 
994 |a 2019 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 910000  |d 911700  |e 910000PR137474466  |e 911700PR137474466  |k 0/910000/  |k 1/910000/911700/  |p 7 
998 |g 116966895X  |a Wollmann, Thomas  |m 116966895X:Wollmann, Thomas  |d 160000  |d 160100  |e 160000PW116966895X  |e 160100PW116966895X  |k 0/160000/  |k 1/160000/160100/  |p 6 
999 |a KXP-PPN1677940425  |e 3519111977 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"family":"Veta","given":"Mitko","display":"Veta, Mitko","role":"aut"},{"role":"aut","display":"Wollmann, Thomas","given":"Thomas","family":"Wollmann"},{"family":"Rohr","given":"Karl","display":"Rohr, Karl","role":"aut"}],"id":{"eki":["1677940425"],"doi":["10.1016/j.media.2019.02.012"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"11 S."}],"relHost":[{"disp":"Predicting breast tumor proliferation from whole-slide images the TUPAC16 challengeMedical image analysis","note":["Gesehen am 16.05.23"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"recId":"306365081","titleAlt":[{"title":"Medical image analysis online"}],"origin":[{"dateIssuedDisp":"1996-","publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["306365081"],"issn":["1361-8423"],"zdb":["1497450-2"]},"pubHistory":["1.1996/97 -"],"part":{"pages":"111-121","text":"54(2019), Seite 111-121","volume":"54","extent":"11","year":"2019"}}],"title":[{"title_sort":"Predicting breast tumor proliferation from whole-slide images","title":"Predicting breast tumor proliferation from whole-slide images","subtitle":"the TUPAC16 challenge"}],"name":{"displayForm":["Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P.W. Pluim"]},"recId":"1677940425","note":["Gesehen am 30.09.2019"],"origin":[{"dateIssuedDisp":"27 February 2019","dateIssuedKey":"2019"}]} 
SRT |a VETAMITKOWPREDICTING2720