Efficient numerical scheme for solving the Allen-Cahn equation

This article presents an efficient and robust algorithm for the numerical solution of the Allen-Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional-step scheme for time discretization and the conforming finite elem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shah, Abdullah (VerfasserIn) , Sabir, Muhammad (VerfasserIn) , Qasim, Muhammad (VerfasserIn) , Bastian, Peter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 February 2018
In: Numerical methods for partial differential equations
Year: 2018, Jahrgang: 34, Heft: 5, Pages: 1820-1833
ISSN:1098-2426
DOI:10.1002/num.22255
Online-Zugang:Verlag, Volltext: https://doi.org/10.1002/num.22255
Verlag: https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22255
Volltext
Verfasserangaben:Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian

MARC

LEADER 00000caa a2200000 c 4500
001 1677968605
003 DE-627
005 20220816233508.0
007 cr uuu---uuuuu
008 191001s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/num.22255  |2 doi 
035 |a (DE-627)1677968605 
035 |a (DE-599)KXP1677968605 
035 |a (OCoLC)1341244686 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Shah, Abdullah  |e VerfasserIn  |0 (DE-588)1196120072  |0 (DE-627)1677968311  |4 aut 
245 1 0 |a Efficient numerical scheme for solving the Allen-Cahn equation  |c Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian 
264 1 |c 23 February 2018 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.10.2019 
520 |a This article presents an efficient and robust algorithm for the numerical solution of the Allen-Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional-step scheme for time discretization and the conforming finite element method for space discretization. For the steady-state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional-step scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations. 
650 4 |a Allen-Cahn equation 
650 4 |a diagonally implicit fractional-step scheme 
650 4 |a DUNE-PDELab 
650 4 |a finite element method 
650 4 |a interfacial dynamics 
700 1 |a Sabir, Muhammad  |e VerfasserIn  |4 aut 
700 1 |a Qasim, Muhammad  |e VerfasserIn  |4 aut 
700 1 |a Bastian, Peter  |d 1964-  |e VerfasserIn  |0 (DE-588)1045599794  |0 (DE-627)774643374  |0 (DE-576)399098224  |4 aut 
773 0 8 |i Enthalten in  |t Numerical methods for partial differential equations  |d New York, NY [u.a.] : Wiley, 1985  |g 34(2018), 5, Seite 1820-1833  |h Online-Ressource  |w (DE-627)318472317  |w (DE-600)2012605-0  |w (DE-576)095660216  |x 1098-2426  |7 nnas  |a Efficient numerical scheme for solving the Allen-Cahn equation 
773 1 8 |g volume:34  |g year:2018  |g number:5  |g pages:1820-1833  |g extent:14  |a Efficient numerical scheme for solving the Allen-Cahn equation 
856 4 0 |u https://doi.org/10.1002/num.22255  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22255  |x Verlag 
951 |a AR 
992 |a 20191001 
993 |a Article 
994 |a 2018 
998 |g 1045599794  |a Bastian, Peter  |m 1045599794:Bastian, Peter  |d 700000  |d 708000  |e 700000PB1045599794  |e 708000PB1045599794  |k 0/700000/  |k 1/700000/708000/  |p 4  |y j 
999 |a KXP-PPN1677968605  |e 3519180316 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY [u.a.]","dateIssuedDisp":"1985-","dateIssuedKey":"1985","publisher":"Wiley"}],"id":{"doi":["10.1002/(ISSN)1098-2426"],"eki":["318472317"],"zdb":["2012605-0"],"issn":["1098-2426"]},"pubHistory":["1.1985 -"],"part":{"volume":"34","text":"34(2018), 5, Seite 1820-1833","extent":"14","year":"2018","issue":"5","pages":"1820-1833"},"note":["Gesehen am 11.10.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Efficient numerical scheme for solving the Allen-Cahn equationNumerical methods for partial differential equations","language":["eng"],"recId":"318472317","title":[{"title":"Numerical methods for partial differential equations","subtitle":"an international journal","title_sort":"Numerical methods for partial differential equations"}]}],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1677968605"],"doi":["10.1002/num.22255"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"23 February 2018"}],"name":{"displayForm":["Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian"]},"language":["eng"],"recId":"1677968605","note":["Gesehen am 01.10.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Efficient numerical scheme for solving the Allen-Cahn equation","title_sort":"Efficient numerical scheme for solving the Allen-Cahn equation"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Shah, Abdullah","given":"Abdullah","family":"Shah"},{"family":"Sabir","given":"Muhammad","roleDisplay":"VerfasserIn","display":"Sabir, Muhammad","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Qasim, Muhammad","given":"Muhammad","family":"Qasim"},{"given":"Peter","family":"Bastian","role":"aut","display":"Bastian, Peter","roleDisplay":"VerfasserIn"}]} 
SRT |a SHAHABDULLEFFICIENTN2320