Efficient numerical scheme for solving the Allen-Cahn equation
This article presents an efficient and robust algorithm for the numerical solution of the Allen-Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional-step scheme for time discretization and the conforming finite elem...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
23 February 2018
|
| In: |
Numerical methods for partial differential equations
Year: 2018, Jahrgang: 34, Heft: 5, Pages: 1820-1833 |
| ISSN: | 1098-2426 |
| DOI: | 10.1002/num.22255 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1002/num.22255 Verlag: https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22255 |
| Verfasserangaben: | Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1677968605 | ||
| 003 | DE-627 | ||
| 005 | 20220816233508.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 191001s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1002/num.22255 |2 doi | |
| 035 | |a (DE-627)1677968605 | ||
| 035 | |a (DE-599)KXP1677968605 | ||
| 035 | |a (OCoLC)1341244686 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Shah, Abdullah |e VerfasserIn |0 (DE-588)1196120072 |0 (DE-627)1677968311 |4 aut | |
| 245 | 1 | 0 | |a Efficient numerical scheme for solving the Allen-Cahn equation |c Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian |
| 264 | 1 | |c 23 February 2018 | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 01.10.2019 | ||
| 520 | |a This article presents an efficient and robust algorithm for the numerical solution of the Allen-Cahn equation, which represents the motion of antiphase boundaries. The proposed algorithm is based on the diagonally implicit fractional-step scheme for time discretization and the conforming finite element method for space discretization. For the steady-state solution, both uniform and adaptive grids are used to illustrate the effectiveness of adaptive grids over uniform grids. For the unsteady solution, the diagonally implicit fractional-step scheme is compared with other time discretization schemes in terms of computational cost and temporal error estimation accuracy. Numerical examples are presented to illustrate the capabilities of the proposed algorithm in solving nonlinear partial differential equations. | ||
| 650 | 4 | |a Allen-Cahn equation | |
| 650 | 4 | |a diagonally implicit fractional-step scheme | |
| 650 | 4 | |a DUNE-PDELab | |
| 650 | 4 | |a finite element method | |
| 650 | 4 | |a interfacial dynamics | |
| 700 | 1 | |a Sabir, Muhammad |e VerfasserIn |4 aut | |
| 700 | 1 | |a Qasim, Muhammad |e VerfasserIn |4 aut | |
| 700 | 1 | |a Bastian, Peter |d 1964- |e VerfasserIn |0 (DE-588)1045599794 |0 (DE-627)774643374 |0 (DE-576)399098224 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Numerical methods for partial differential equations |d New York, NY [u.a.] : Wiley, 1985 |g 34(2018), 5, Seite 1820-1833 |h Online-Ressource |w (DE-627)318472317 |w (DE-600)2012605-0 |w (DE-576)095660216 |x 1098-2426 |7 nnas |a Efficient numerical scheme for solving the Allen-Cahn equation |
| 773 | 1 | 8 | |g volume:34 |g year:2018 |g number:5 |g pages:1820-1833 |g extent:14 |a Efficient numerical scheme for solving the Allen-Cahn equation |
| 856 | 4 | 0 | |u https://doi.org/10.1002/num.22255 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22255 |x Verlag |
| 951 | |a AR | ||
| 992 | |a 20191001 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1045599794 |a Bastian, Peter |m 1045599794:Bastian, Peter |d 700000 |d 708000 |e 700000PB1045599794 |e 708000PB1045599794 |k 0/700000/ |k 1/700000/708000/ |p 4 |y j | ||
| 999 | |a KXP-PPN1677968605 |e 3519180316 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY [u.a.]","dateIssuedDisp":"1985-","dateIssuedKey":"1985","publisher":"Wiley"}],"id":{"doi":["10.1002/(ISSN)1098-2426"],"eki":["318472317"],"zdb":["2012605-0"],"issn":["1098-2426"]},"pubHistory":["1.1985 -"],"part":{"volume":"34","text":"34(2018), 5, Seite 1820-1833","extent":"14","year":"2018","issue":"5","pages":"1820-1833"},"note":["Gesehen am 11.10.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Efficient numerical scheme for solving the Allen-Cahn equationNumerical methods for partial differential equations","language":["eng"],"recId":"318472317","title":[{"title":"Numerical methods for partial differential equations","subtitle":"an international journal","title_sort":"Numerical methods for partial differential equations"}]}],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1677968605"],"doi":["10.1002/num.22255"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"23 February 2018"}],"name":{"displayForm":["Abdullah Shah, Muhammad Sabir, Muhammad Qasim, Peter Bastian"]},"language":["eng"],"recId":"1677968605","note":["Gesehen am 01.10.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Efficient numerical scheme for solving the Allen-Cahn equation","title_sort":"Efficient numerical scheme for solving the Allen-Cahn equation"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Shah, Abdullah","given":"Abdullah","family":"Shah"},{"family":"Sabir","given":"Muhammad","roleDisplay":"VerfasserIn","display":"Sabir, Muhammad","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Qasim, Muhammad","given":"Muhammad","family":"Qasim"},{"given":"Peter","family":"Bastian","role":"aut","display":"Bastian, Peter","roleDisplay":"VerfasserIn"}]} | ||
| SRT | |a SHAHABDULLEFFICIENTN2320 | ||