Focused multidimensional scaling: interactive visualization for exploration of high-dimensional data

Visualization is an important tool for generating meaning from scientific data, but the visualization of structures in high-dimensional data (such as from high-throughput assays) presents unique challenges. Dimension reduction methods are key in solving this challenge, but these methods can be misle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Urpa, Lea M. (VerfasserIn) , Anders, Simon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 02 May 2019
In: BMC bioinformatics
Year: 2019, Jahrgang: 20
ISSN:1471-2105
DOI:10.1186/s12859-019-2780-y
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12859-019-2780-y
Volltext
Verfasserangaben:Lea M. Urpa and Simon Anders
Beschreibung
Zusammenfassung:Visualization is an important tool for generating meaning from scientific data, but the visualization of structures in high-dimensional data (such as from high-throughput assays) presents unique challenges. Dimension reduction methods are key in solving this challenge, but these methods can be misleading- especially when apparent clustering in the dimension-reducing representation is used as the basis for reasoning about relationships within the data.
Beschreibung:Gesehen am 02.10.2019
Beschreibung:Online Resource
ISSN:1471-2105
DOI:10.1186/s12859-019-2780-y