Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges

Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity of software architectures, input and output file formats, and computing environments....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ellrott, Kyle (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 September 2019
In: Genome biology
Year: 2019, Jahrgang: 20
ISSN:1474-760X
DOI:10.1186/s13059-019-1794-0
Online-Zugang:Verlag, Volltext: https://doi.org/10.1186/s13059-019-1794-0
Volltext
Verfasserangaben:Kyle Ellrott, Alex Buchanan, Allison Creason, Michael Mason, Thomas Schaffter, Bruce Hoff, James Eddy, John M. Chilton, Thomas Yu, Joshua M. Stuart, Julio Saez-Rodriguez, Gustavo Stolovitzky, Paul C. Boutros and Justin Guinney
Beschreibung
Zusammenfassung:Challenges are achieving broad acceptance for addressing many biomedical questions and enabling tool assessment. But ensuring that the methods evaluated are reproducible and reusable is complicated by the diversity of software architectures, input and output file formats, and computing environments. To mitigate these problems, some challenges have leveraged new virtualization and compute methods, requiring participants to submit cloud-ready software packages. We review recent data challenges with innovative approaches to model reproducibility and data sharing, and outline key lessons for improving quantitative biomedical data analysis through crowd-sourced benchmarking challenges.
Beschreibung:Gesehen am 07.10.2019
Beschreibung:Online Resource
ISSN:1474-760X
DOI:10.1186/s13059-019-1794-0