GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation

Cell segmentation in microscopy images is a common and challenging task. In recent years, deep neural networks achieved remarkable improvements in the field of computer vision. The dominant paradigm in segmentation is using convolutional neural networks, less common are recurrent neural networks. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wollmann, Thomas (VerfasserIn) , Gunkel, Manuel (VerfasserIn) , Erfle, Holger (VerfasserIn) , Rippe, Karsten (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 May 2019
In: Medical image analysis
Year: 2019, Jahrgang: 56, Pages: 68-79
ISSN:1361-8423
DOI:10.1016/j.media.2019.04.011
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.media.2019.04.011
Verlag: http://www.sciencedirect.com/science/article/pii/S1361841518306753
Volltext
Verfasserangaben:T. Wollmann, M. Gunkel, I. Chung, H. Erfle, K. Rippe, K. Rohr

MARC

LEADER 00000caa a2200000 c 4500
001 1679240366
003 DE-627
005 20230426155223.0
007 cr uuu---uuuuu
008 191021s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2019.04.011  |2 doi 
035 |a (DE-627)1679240366 
035 |a (DE-599)KXP1679240366 
035 |a (OCoLC)1341248112 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Wollmann, Thomas  |d 1990-  |e VerfasserIn  |0 (DE-588)116966895X  |0 (DE-627)1035271516  |0 (DE-576)512181942  |4 aut 
245 1 0 |a GRUU-Net  |b Integrated convolutional and gated recurrent neural network for cell segmentation  |c T. Wollmann, M. Gunkel, I. Chung, H. Erfle, K. Rippe, K. Rohr 
264 1 |c 31 May 2019 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.10.2019 
520 |a Cell segmentation in microscopy images is a common and challenging task. In recent years, deep neural networks achieved remarkable improvements in the field of computer vision. The dominant paradigm in segmentation is using convolutional neural networks, less common are recurrent neural networks. In this work, we propose a new deep learning method for cell segmentation, which integrates convolutional neural networks and gated recurrent neural networks over multiple image scales to exploit the strength of both types of networks. To increase the robustness of the training and improve segmentation, we introduce a novel focal loss function. We also present a distributed scheme for optimized training of the integrated neural network. We applied our proposed method to challenging data of glioblastoma cell nuclei and performed a quantitative comparison with state-of-the-art methods. Insights on how our extensions affect training and inference are also provided. Moreover, we benchmarked our method using a wide spectrum of all 22 real microscopy datasets of the Cell Tracking Challenge. 
650 4 |a Convolutional neural network 
650 4 |a Deep learning 
650 4 |a Gated Recurrent Unit 
650 4 |a Microscopy 
650 4 |a Segmentation 
700 1 |a Gunkel, Manuel  |e VerfasserIn  |0 (DE-588)1016160720  |0 (DE-627)671229524  |0 (DE-576)351595430  |4 aut 
700 1 |a Erfle, Holger  |e VerfasserIn  |0 (DE-588)1033880965  |0 (DE-627)742725650  |0 (DE-576)184848008  |4 aut 
700 1 |a Rippe, Karsten  |e VerfasserIn  |0 (DE-588)102853261X  |0 (DE-627)730885070  |0 (DE-576)168897989  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 56(2019), Seite 68-79  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a GRUU-Net Integrated convolutional and gated recurrent neural network for cell segmentation 
773 1 8 |g volume:56  |g year:2019  |g pages:68-79  |g extent:12  |a GRUU-Net Integrated convolutional and gated recurrent neural network for cell segmentation 
856 4 0 |u https://doi.org/10.1016/j.media.2019.04.011  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1361841518306753  |x Verlag 
951 |a AR 
992 |a 20191021 
993 |a Article 
994 |a 2019 
998 |g 102853261X  |a Rippe, Karsten  |m 102853261X:Rippe, Karsten  |d 700000  |d 716000  |e 700000PR102853261X  |e 716000PR102853261X  |k 0/700000/  |k 1/700000/716000/  |p 5 
998 |g 1016160720  |a Gunkel, Manuel  |m 1016160720:Gunkel, Manuel  |d 700000  |d 716000  |e 700000PG1016160720  |e 716000PG1016160720  |k 0/700000/  |k 1/700000/716000/  |p 2 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |d 700000  |d 718000  |e 160000PR137474466  |e 160100PR137474466  |e 700000PR137474466  |e 718000PR137474466  |k 0/160000/  |k 1/160000/160100/  |k 0/700000/  |k 1/700000/718000/  |p 6  |y j 
998 |g 1033880965  |a Erfle, Holger  |m 1033880965:Erfle, Holger  |d 700000  |d 716000  |d 700000  |d 718000  |e 700000PE1033880965  |e 716000PE1033880965  |e 700000PE1033880965  |e 718000PE1033880965  |k 0/700000/  |k 1/700000/716000/  |k 0/700000/  |k 1/700000/718000/  |p 4 
998 |g 116966895X  |a Wollmann, Thomas  |m 116966895X:Wollmann, Thomas  |d 700000  |d 716000  |e 700000PW116966895X  |e 716000PW116966895X  |k 0/700000/  |k 1/700000/716000/  |p 1  |x j 
999 |a KXP-PPN1679240366  |e 3525750455 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"GRUU-Net","title":"GRUU-Net","subtitle":"Integrated convolutional and gated recurrent neural network for cell segmentation"}],"language":["eng"],"physDesc":[{"extent":"12 S."}],"id":{"doi":["10.1016/j.media.2019.04.011"],"eki":["1679240366"]},"relHost":[{"origin":[{"publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science","dateIssuedDisp":"1996-","dateIssuedKey":"1996"}],"recId":"306365081","titleAlt":[{"title":"Medical image analysis online"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 16.05.23"],"disp":"GRUU-Net Integrated convolutional and gated recurrent neural network for cell segmentationMedical image analysis","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["306365081"],"issn":["1361-8423"],"zdb":["1497450-2"]},"pubHistory":["1.1996/97 -"],"part":{"pages":"68-79","extent":"12","volume":"56","text":"56(2019), Seite 68-79","year":"2019"},"language":["eng"],"title":[{"title_sort":"Medical image analysis","title":"Medical image analysis"}]}],"note":["Gesehen am 21.10.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"31 May 2019","dateIssuedKey":"2019"}],"recId":"1679240366","person":[{"family":"Wollmann","display":"Wollmann, Thomas","given":"Thomas","role":"aut"},{"role":"aut","given":"Manuel","display":"Gunkel, Manuel","family":"Gunkel"},{"family":"Erfle","display":"Erfle, Holger","role":"aut","given":"Holger"},{"family":"Rippe","display":"Rippe, Karsten","given":"Karsten","role":"aut"},{"family":"Rohr","display":"Rohr, Karl","role":"aut","given":"Karl"}],"name":{"displayForm":["T. Wollmann, M. Gunkel, I. Chung, H. Erfle, K. Rippe, K. Rohr"]}} 
SRT |a WOLLMANNTHGRUUNET3120