Model-based learning of local image features for unsupervised texture segmentation

Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kiechle, Martin (VerfasserIn) , Storath, Martin (VerfasserIn) , Weinmann, Andreas (VerfasserIn) , Kleinsteuber, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 26, 2018
In: IEEE transactions on image processing
Year: 2018, Jahrgang: 27, Heft: 4, Pages: 1994-2007
ISSN:1941-0042
DOI:10.1109/TIP.2018.2792904
Online-Zugang:Resolving-System, Volltext: https://doi.org/10.1109/TIP.2018.2792904
Resolving-System, Volltext: https://ieeexplore.ieee.org/document/8255629
Volltext
Verfasserangaben:Martin Kiechle, Martin Storath, Andreas Weinmann, and Martin Kleinsteuber

MARC

LEADER 00000caa a2200000 c 4500
001 1679247190
003 DE-627
005 20220817004309.0
007 cr uuu---uuuuu
008 191021s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2792904  |2 doi 
035 |a (DE-627)1679247190 
035 |a (DE-599)KXP1679247190 
035 |a (OCoLC)1341248263 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kiechle, Martin  |e VerfasserIn  |0 (DE-588)1197569758  |0 (DE-627)1679246178  |4 aut 
245 1 0 |a Model-based learning of local image features for unsupervised texture segmentation  |c Martin Kiechle, Martin Storath, Andreas Weinmann, and Martin Kleinsteuber 
264 1 |c January 26, 2018 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.10.2019 
520 |a Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this paper, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images. 
650 4 |a Computational modeling 
650 4 |a Cost function 
650 4 |a Data models 
650 4 |a feature extraction 
650 4 |a feature vector 
650 4 |a geometric optimization 
650 4 |a ground truth segmentation 
650 4 |a histological images 
650 4 |a image patches 
650 4 |a image segmentation 
650 4 |a Image segmentation 
650 4 |a image texture 
650 4 |a learning (artificial intelligence) 
650 4 |a learning process 
650 4 |a local image features 
650 4 |a Mathematical model 
650 4 |a model-based learning 
650 4 |a Mumford-Shah model 
650 4 |a piecewise constant feature image 
650 4 |a piecewise constant Mumford-Shah model 
650 4 |a Prague texture segmentation benchmark 
650 4 |a suitable convolutional features 
650 4 |a textural patterns 
650 4 |a Texture segmentation 
650 4 |a texture segmentation methods 
650 4 |a Training data 
650 4 |a unsupervised learning 
650 4 |a unsupervised texture segmentation 
700 1 |a Storath, Martin  |e VerfasserIn  |0 (DE-588)1036903818  |0 (DE-627)751410578  |0 (DE-576)389559830  |4 aut 
700 1 |a Weinmann, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Kleinsteuber, Martin  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on image processing  |d New York, NY : IEEE, 1992  |g 27(2018), 4, Seite 1994-2007  |h Online-Ressource  |w (DE-627)325162050  |w (DE-600)2034319-X  |w (DE-576)094086281  |x 1941-0042  |7 nnas 
773 1 8 |g volume:27  |g year:2018  |g number:4  |g pages:1994-2007  |g extent:14  |a Model-based learning of local image features for unsupervised texture segmentation 
856 4 0 |u https://doi.org/10.1109/TIP.2018.2792904  |x Resolving-System  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/8255629  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191021 
993 |a Article 
994 |a 2018 
998 |g 1036903818  |a Storath, Martin  |m 1036903818:Storath, Martin  |d 700000  |d 708000  |e 700000PS1036903818  |e 708000PS1036903818  |k 0/700000/  |k 1/700000/708000/  |p 2 
999 |a KXP-PPN1679247190  |e 3525767560 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"titleAlt":[{"title":"Transactions on image processing"}],"part":{"volume":"27","text":"27(2018), 4, Seite 1994-2007","extent":"14","year":"2018","pages":"1994-2007","issue":"4"},"pubHistory":["1.1992 -"],"corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Institute of Electrical and Electronics Engineers"},{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"IEEE Signal Processing Society"}],"language":["eng"],"recId":"325162050","disp":"Institute of Electrical and Electronics EngineersIEEE transactions on image processing","note":["Gesehen am 10.09.02"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"IEEE transactions on image processing","title":"IEEE transactions on image processing","subtitle":"a publication of the IEEE Signal Processing Society"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1941-0042"],"eki":["325162050"],"zdb":["2034319-X"]},"origin":[{"publisherPlace":"New York, NY","dateIssuedDisp":"1992-","dateIssuedKey":"1992","publisher":"IEEE"}]}],"physDesc":[{"extent":"14 S."}],"id":{"eki":["1679247190"],"doi":["10.1109/TIP.2018.2792904"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"January 26, 2018"}],"name":{"displayForm":["Martin Kiechle, Martin Storath, Andreas Weinmann, and Martin Kleinsteuber"]},"language":["eng"],"recId":"1679247190","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 21.10.2019"],"title":[{"title":"Model-based learning of local image features for unsupervised texture segmentation","title_sort":"Model-based learning of local image features for unsupervised texture segmentation"}],"person":[{"family":"Kiechle","given":"Martin","roleDisplay":"VerfasserIn","display":"Kiechle, Martin","role":"aut"},{"family":"Storath","given":"Martin","display":"Storath, Martin","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Andreas","family":"Weinmann","role":"aut","display":"Weinmann, Andreas","roleDisplay":"VerfasserIn"},{"display":"Kleinsteuber, Martin","roleDisplay":"VerfasserIn","role":"aut","family":"Kleinsteuber","given":"Martin"}]} 
SRT |a KIECHLEMARMODELBASED2620