Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions

Background: In recent months, multiple publications have demonstrated the use of convolutional neural networks (CNN) to classify images of skin cancer as precisely as dermatologists. However, these CNNs failed to outperform the International Symposium on Biomedical Imaging (ISBI) 2016 challenge whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brinker, Titus Josef (VerfasserIn) , Enk, Alexander (VerfasserIn) , Kalle, Christof von (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 24, 2019
In: PLOS ONE
Year: 2019, Jahrgang: 14, Heft: 6
ISSN:1932-6203
DOI:10.1371/journal.pone.0218713
Online-Zugang:Verlag, Volltext: https://doi.org/10.1371/journal.pone.0218713
Verlag: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218713
Volltext
Verfasserangaben:Titus J. Brinker, Achim Hekler, Alexander H. Enk, Christof von Kalle

MARC

LEADER 00000caa a2200000 c 4500
001 1679278827
003 DE-627
005 20220817004522.0
007 cr uuu---uuuuu
008 191022s2019 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0218713  |2 doi 
035 |a (DE-627)1679278827 
035 |a (DE-599)KXP1679278827 
035 |a (OCoLC)1341248424 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
245 1 0 |a Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions  |c Titus J. Brinker, Achim Hekler, Alexander H. Enk, Christof von Kalle 
264 1 |c June 24, 2019 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.10.2019 
520 |a Background: In recent months, multiple publications have demonstrated the use of convolutional neural networks (CNN) to classify images of skin cancer as precisely as dermatologists. However, these CNNs failed to outperform the International Symposium on Biomedical Imaging (ISBI) 2016 challenge which ranked the average precision for classification of dermoscopic melanoma images. Accordingly, the technical progress represented by these studies is limited. In addition, the available reports are impossible to reproduce, due to incomplete descriptions of training procedures and the use of proprietary image databases or non-disclosure of used images. These factors prevent the comparison of various CNN classifiers in equal terms. Objective: To demonstrate the training of an image-classifier CNN that outperforms the winner of the ISBI 2016 CNNs challenge by using open source images exclusively. Methods: A detailed description of the training procedure is reported while the used images and test sets are disclosed fully, to insure the reproducibility of our work. Results: Our CNN classifier outperforms all recent attempts to classify the original ISBI 2016 challenge test data (full set of 379 test images), with an average precision of 0.709 (vs. 0.637 of the ISBI winner) and with an area under the receiver operating curve of 0.85. Conclusion: This work illustrates the potential for improving skin cancer classification with enhanced training procedures for CNNs, while avoiding the use of costly equipment or proprietary image data. 
650 4 |a Archives 
650 4 |a Biopsy 
650 4 |a Cancer detection and diagnosis 
650 4 |a Deep learning 
650 4 |a Human learning 
650 4 |a Lesions 
650 4 |a Melanomas 
650 4 |a Neural networks 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Kalle, Christof von  |d 1962-  |e VerfasserIn  |0 (DE-588)1036481115  |0 (DE-627)75107926X  |0 (DE-576)168957396  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 14(2019,6) Artikel-Nummer e0218713, 8 Seiten  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions 
773 1 8 |g volume:14  |g year:2019  |g number:6  |g extent:8  |a Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions 
856 4 0 |u https://doi.org/10.1371/journal.pone.0218713  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218713  |x Verlag 
951 |a AR 
992 |a 20191022 
993 |a Article 
994 |a 2019 
998 |g 1036481115  |a Kalle, Christof von  |m 1036481115:Kalle, Christof von  |d 910000  |e 910000PK1036481115  |k 0/910000/  |p 4  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN1679278827  |e 3526009198 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"part":{"volume":"14","extent":"8","year":"2019","text":"14(2019,6) Artikel-Nummer e0218713, 8 Seiten","issue":"6"},"title":[{"title_sort":"PLOS ONE","title":"PLOS ONE"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2006-","publisherPlace":"San Francisco, California, US ; Lawrence, Kan.","dateIssuedKey":"2006","publisher":"PLOS ; PLoS"}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"pubHistory":["1.2006 -"],"recId":"523574592","name":{"displayForm":["Public Library of Science"]},"disp":"Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesionsPLOS ONE","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"corporate":[{"display":"Public Library of Science","role":"isb"}],"id":{"zdb":["2267670-3"],"issn":["1932-6203"],"eki":["523574592"]}}],"physDesc":[{"extent":"8 S."}],"person":[{"role":"aut","display":"Brinker, Titus Josef","family":"Brinker","given":"Titus Josef"},{"role":"aut","family":"Enk","display":"Enk, Alexander","given":"Alexander"},{"role":"aut","given":"Christof von","display":"Kalle, Christof von","family":"Kalle"}],"title":[{"title_sort":"Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions","title":"Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1679278827"],"doi":["10.1371/journal.pone.0218713"]},"language":["eng"],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"June 24, 2019"}],"recId":"1679278827","note":["Gesehen am 22.10.2019"],"name":{"displayForm":["Titus J. Brinker, Achim Hekler, Alexander H. Enk, Christof von Kalle"]}} 
SRT |a BRINKERTITENHANCEDCL2420