Consistency of the Elastic Net under a finite second moment assumption on the noise

Elastic Net regularization is a powerful tool to do prediction as well as variable selection. De Mol et al. (2009) developed a theoretical framework to analyse the Elastic Net and proved important properties as the consistency of the Elastic Net estimator under certain model assumptions. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pilz, Maximilian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2020
In: Journal of statistical planning and inference
Year: 2019, Jahrgang: 204, Pages: 72-79
ISSN:0378-3758
DOI:10.1016/j.jspi.2019.04.007
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.jspi.2019.04.007
Verlag: http://www.sciencedirect.com/science/article/pii/S0378375818302210
Volltext
Verfasserangaben:Maximilian Pilz
Beschreibung
Zusammenfassung:Elastic Net regularization is a powerful tool to do prediction as well as variable selection. De Mol et al. (2009) developed a theoretical framework to analyse the Elastic Net and proved important properties as the consistency of the Elastic Net estimator under certain model assumptions. In this paper, these assumptions are relaxed and extended to a wider class of noise distributions. It is shown that the consistency of the Elastic Net still holds true under a finite second moment assumption on the noise term.
Beschreibung:Gesehen am 28.10.2019
Available online 21 May 2019
Beschreibung:Online Resource
ISSN:0378-3758
DOI:10.1016/j.jspi.2019.04.007