Classification of ALS point clouds using end-to-end deep learning

Deep learning, referring to artificial neural networks with multiple layers, is widely used for classification tasks in many disciplines including computer vision. The most popular type is the Convolutional Neural Network (CNN), commonly applied to 2D image data. However, CNNs are difficult to adapt...

Full description

Saved in:
Bibliographic Details
Main Authors: Winiwarter, Lukas (Author) , Mandlburger, Gottfried (Author) , Schmohl, Stefan (Author) , Pfeifer, Norbert (Author)
Format: Article (Journal)
Language:English
Published: 15 August 2019
In: Journal of photogrammetry, remote sensing and geoinformation science
Year: 2019, Volume: 87, Issue: 3, Pages: 75-90
ISSN:2512-2819
DOI:10.1007/s41064-019-00073-0
Online Access:Verlag, Volltext: https://doi.org/10.1007/s41064-019-00073-0
Get full text
Author Notes:Lukas Winiwarter, Gottfried Mandlburger, Stefan Schmohl, Norbert Pfeifer

MARC

LEADER 00000caa a2200000 c 4500
001 1681034409
003 DE-627
005 20240729174737.0
007 cr uuu---uuuuu
008 191105s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s41064-019-00073-0  |2 doi 
035 |a (DE-627)1681034409 
035 |a (DE-599)KXP1681034409 
035 |a (OCoLC)1341250279 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Winiwarter, Lukas  |d 1994-  |e VerfasserIn  |0 (DE-588)1198882808  |0 (DE-627)1681036118  |4 aut 
245 1 0 |a Classification of ALS point clouds using end-to-end deep learning  |c Lukas Winiwarter, Gottfried Mandlburger, Stefan Schmohl, Norbert Pfeifer 
264 1 |c 15 August 2019 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.11.2019 
520 |a Deep learning, referring to artificial neural networks with multiple layers, is widely used for classification tasks in many disciplines including computer vision. The most popular type is the Convolutional Neural Network (CNN), commonly applied to 2D image data. However, CNNs are difficult to adapt to irregular data like point clouds. PointNet, on the other hand, has enabled the derivation of features based on the geometric distribution of a set of points in nD-space utilising a neural network. We use PointNet on multiple scales to automatically learn a representation of local neighbourhoods in an end-to-end fashion, which is optimised for semantic labelling on 3D point clouds acquired by Airborne Laser Scanning (ALS). The results are comparable to those using manually crafted features, suggesting a successful representation of these neighbourhoods. On the ISPRS 3D Semantic Labelling benchmark, we achieve 80.6% overall accuracy, a mid-field result. Investigation on a bigger dataset, namely the 2011 ALS point cloud of the federal state of Vorarlberg, shows overall accuracies of up to 95.8% over large-scale built-up areas. Lower accuracy is achieved for the separation of low vegetation and ground points, presumably because of invalid assumptions about the distribution of classes in space, especially in high alpine regions. We conclude that the method of the end-to-end system, allowing training on a big variety of classification problems without the need for expert knowledge about neighbourhood features can also successfully be applied to single-point-based classification of ALS point clouds. 
650 4 |a Airborne laser scanning 
650 4 |a Machine learning 
650 4 |a Neural networks 
650 4 |a PointNet 
650 4 |a Semantic labelling 
700 1 |a Mandlburger, Gottfried  |e VerfasserIn  |0 (DE-588)1271480328  |0 (DE-627)1820308294  |4 aut 
700 1 |a Schmohl, Stefan  |d 1966-  |e VerfasserIn  |0 (DE-588)123561809  |0 (DE-627)70634703X  |0 (DE-576)184979110  |4 aut 
700 1 |a Pfeifer, Norbert  |d 1971-  |e VerfasserIn  |0 (DE-588)125955872X  |0 (DE-627)1806766167  |4 aut 
773 0 8 |i Enthalten in  |t Journal of photogrammetry, remote sensing and geoinformation science  |d [Cham] : Springer International Publishing, 2017  |g 87(2019), 3, Seite 75-90  |h Online-Ressource  |w (DE-627)881282847  |w (DE-600)2886415-3  |w (DE-576)484661590  |x 2512-2819  |7 nnas  |a Classification of ALS point clouds using end-to-end deep learning 
773 1 8 |g volume:87  |g year:2019  |g number:3  |g pages:75-90  |g extent:16  |a Classification of ALS point clouds using end-to-end deep learning 
856 4 0 |u https://doi.org/10.1007/s41064-019-00073-0  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191105 
993 |a Article 
994 |a 2019 
998 |g 1198882808  |a Winiwarter, Lukas  |m 1198882808:Winiwarter, Lukas  |d 120000  |d 120700  |e 120000PW1198882808  |e 120700PW1198882808  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1681034409  |e 3537318820 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1681034409","id":{"eki":["1681034409"],"doi":["10.1007/s41064-019-00073-0"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Lukas Winiwarter, Gottfried Mandlburger, Stefan Schmohl, Norbert Pfeifer"]},"origin":[{"dateIssuedDisp":"15 August 2019","dateIssuedKey":"2019"}],"note":["Gesehen am 05.11.2019"],"language":["eng"],"person":[{"given":"Lukas","family":"Winiwarter","role":"aut","display":"Winiwarter, Lukas"},{"given":"Gottfried","display":"Mandlburger, Gottfried","family":"Mandlburger","role":"aut"},{"given":"Stefan","display":"Schmohl, Stefan","role":"aut","family":"Schmohl"},{"given":"Norbert","display":"Pfeifer, Norbert","role":"aut","family":"Pfeifer"}],"relHost":[{"language":["ger","eng"],"pubHistory":["Volume 85, issue 1 (February 2017)-"],"note":["Gesehen am 20. März 2017"],"titleAlt":[{"title":"PFG"}],"origin":[{"publisherPlace":"[Cham]","dateIssuedDisp":"[2017]-","publisher":"Springer International Publishing"}],"disp":"Classification of ALS point clouds using end-to-end deep learningJournal of photogrammetry, remote sensing and geoinformation science","type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"issn":["2512-2819"],"zdb":["2886415-3"],"eki":["881282847"]},"recId":"881282847","title":[{"subtitle":"PFG : Photogrammetrie, Fernerkundung, Geoinformation","title_sort":"Journal of photogrammetry, remote sensing and geoinformation science","title":"Journal of photogrammetry, remote sensing and geoinformation science"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"87","text":"87(2019), 3, Seite 75-90","extent":"16","issue":"3","pages":"75-90","year":"2019"}}],"physDesc":[{"extent":"16 S."}],"title":[{"title":"Classification of ALS point clouds using end-to-end deep learning","title_sort":"Classification of ALS point clouds using end-to-end deep learning"}]} 
SRT |a WINIWARTERCLASSIFICA1520