A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant

In this article, we describe an efficient method for computing Teitelbaum’s p-adic LL\mathcal {L}-invariant. These invariants are realized as the eigenvalues of the LL\mathcal {L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree TT{\mathcal {T}}, which is computable by the met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gräf, Peter Mathias (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 21 August 2019
In: The Ramanujan journal
Year: 2019, Jahrgang: 50, Heft: 1, Pages: 13-43
ISSN:1572-9303
DOI:10.1007/s11139-019-00160-1
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s11139-019-00160-1
Volltext
Verfasserangaben:Peter Mathias Gräf

MARC

LEADER 00000caa a2200000 c 4500
001 168106619X
003 DE-627
005 20220817020018.0
007 cr uuu---uuuuu
008 191105s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11139-019-00160-1  |2 doi 
035 |a (DE-627)168106619X 
035 |a (DE-599)KXP168106619X 
035 |a (OCoLC)1341250351 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gräf, Peter Mathias  |d 1990-  |e VerfasserIn  |0 (DE-588)1198896574  |0 (DE-627)1681067781  |4 aut 
245 1 2 |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant  |c Peter Mathias Gräf 
264 1 |c 21 August 2019 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.11.2019 
520 |a In this article, we describe an efficient method for computing Teitelbaum’s p-adic LL\mathcal {L}-invariant. These invariants are realized as the eigenvalues of the LL\mathcal {L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree TT{\mathcal {T}}, which is computable by the methods of Franc and Masdeu described in (LMS J Comput Math 17:1-23, 2014). The main difficulty in computing the LL\mathcal {L}-operator is the efficient computation of the p-adic Coleman integrals in its definition. To solve this problem, we use overconvergent methods, first developed by Darmon, Greenberg, Pollack and Stevens. In order to make these methods applicable to our setting, we prove a control theorem for p-adic automorphic forms of arbitrary even weight. Moreover, we give computational evidence for relations between slopes of LL\mathcal {L}-invariants of different levels and weights for p=2p=2p=2. 
650 4 |a 11F03 
650 4 |a 11F67 
650 4 |a 11F85 
650 4 |a 20E08 
650 4 |a Bruhat-Tits tree 
650 4 |a Modular forms 
650 4 |a p-adic automorphic forms 
773 0 8 |i Enthalten in  |t The Ramanujan journal  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997  |g 50(2019), 1, Seite 13-43  |h Online-Ressource  |w (DE-627)320521133  |w (DE-600)2014600-0  |w (DE-576)121191184  |x 1572-9303  |7 nnas  |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant 
773 1 8 |g volume:50  |g year:2019  |g number:1  |g pages:13-43  |g extent:31  |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant 
856 4 0 |u https://doi.org/10.1007/s11139-019-00160-1  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191105 
993 |a Article 
994 |a 2019 
998 |g 1198896574  |a Gräf, Peter Mathias  |m 1198896574:Gräf, Peter Mathias  |d 700000  |d 708000  |e 700000PG1198896574  |e 708000PG1198896574  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j  |y j 
999 |a KXP-PPN168106619X  |e 3537389183 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 05.11.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"168106619X","language":["eng"],"title":[{"title":"A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant","title_sort":"control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant"}],"person":[{"given":"Peter Mathias","family":"Gräf","role":"aut","display":"Gräf, Peter Mathias","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"31 S."}],"relHost":[{"origin":[{"dateIssuedKey":"1997","publisher":"Springer Science + Business Media B.V ; Kluwer Acad. Publ.","dateIssuedDisp":"1997-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1572-9303"],"eki":["320521133"],"zdb":["2014600-0"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"an international journal devoted to the areas of mathematics influenced by Ramanujan","title":"The Ramanujan journal","title_sort":"Ramanujan journal"}],"pubHistory":["1.1997 -"],"part":{"volume":"50","text":"50(2019), 1, Seite 13-43","extent":"31","year":"2019","pages":"13-43","issue":"1"},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 08.03.05"],"disp":"A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariantThe Ramanujan journal","language":["eng"],"recId":"320521133"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 August 2019"}],"id":{"doi":["10.1007/s11139-019-00160-1"],"eki":["168106619X"]},"name":{"displayForm":["Peter Mathias Gräf"]}} 
SRT |a GRAEFPETERCONTROLTHE2120