A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant
In this article, we describe an efficient method for computing Teitelbaum’s p-adic LL\mathcal {L}-invariant. These invariants are realized as the eigenvalues of the LL\mathcal {L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree TT{\mathcal {T}}, which is computable by the met...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
21 August 2019
|
| In: |
The Ramanujan journal
Year: 2019, Jahrgang: 50, Heft: 1, Pages: 13-43 |
| ISSN: | 1572-9303 |
| DOI: | 10.1007/s11139-019-00160-1 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1007/s11139-019-00160-1 |
| Verfasserangaben: | Peter Mathias Gräf |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 168106619X | ||
| 003 | DE-627 | ||
| 005 | 20220817020018.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 191105s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s11139-019-00160-1 |2 doi | |
| 035 | |a (DE-627)168106619X | ||
| 035 | |a (DE-599)KXP168106619X | ||
| 035 | |a (OCoLC)1341250351 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Gräf, Peter Mathias |d 1990- |e VerfasserIn |0 (DE-588)1198896574 |0 (DE-627)1681067781 |4 aut | |
| 245 | 1 | 2 | |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant |c Peter Mathias Gräf |
| 264 | 1 | |c 21 August 2019 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 05.11.2019 | ||
| 520 | |a In this article, we describe an efficient method for computing Teitelbaum’s p-adic LL\mathcal {L}-invariant. These invariants are realized as the eigenvalues of the LL\mathcal {L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree TT{\mathcal {T}}, which is computable by the methods of Franc and Masdeu described in (LMS J Comput Math 17:1-23, 2014). The main difficulty in computing the LL\mathcal {L}-operator is the efficient computation of the p-adic Coleman integrals in its definition. To solve this problem, we use overconvergent methods, first developed by Darmon, Greenberg, Pollack and Stevens. In order to make these methods applicable to our setting, we prove a control theorem for p-adic automorphic forms of arbitrary even weight. Moreover, we give computational evidence for relations between slopes of LL\mathcal {L}-invariants of different levels and weights for p=2p=2p=2. | ||
| 650 | 4 | |a 11F03 | |
| 650 | 4 | |a 11F67 | |
| 650 | 4 | |a 11F85 | |
| 650 | 4 | |a 20E08 | |
| 650 | 4 | |a Bruhat-Tits tree | |
| 650 | 4 | |a Modular forms | |
| 650 | 4 | |a p-adic automorphic forms | |
| 773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 |g 50(2019), 1, Seite 13-43 |h Online-Ressource |w (DE-627)320521133 |w (DE-600)2014600-0 |w (DE-576)121191184 |x 1572-9303 |7 nnas |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant |
| 773 | 1 | 8 | |g volume:50 |g year:2019 |g number:1 |g pages:13-43 |g extent:31 |a A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s11139-019-00160-1 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20191105 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1198896574 |a Gräf, Peter Mathias |m 1198896574:Gräf, Peter Mathias |d 700000 |d 708000 |e 700000PG1198896574 |e 708000PG1198896574 |k 0/700000/ |k 1/700000/708000/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN168106619X |e 3537389183 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 05.11.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"168106619X","language":["eng"],"title":[{"title":"A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant","title_sort":"control theorem for p-adic automorphic forms and Teitelbaum’s L-invariant"}],"person":[{"given":"Peter Mathias","family":"Gräf","role":"aut","display":"Gräf, Peter Mathias","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"31 S."}],"relHost":[{"origin":[{"dateIssuedKey":"1997","publisher":"Springer Science + Business Media B.V ; Kluwer Acad. Publ.","dateIssuedDisp":"1997-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"id":{"issn":["1572-9303"],"eki":["320521133"],"zdb":["2014600-0"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"an international journal devoted to the areas of mathematics influenced by Ramanujan","title":"The Ramanujan journal","title_sort":"Ramanujan journal"}],"pubHistory":["1.1997 -"],"part":{"volume":"50","text":"50(2019), 1, Seite 13-43","extent":"31","year":"2019","pages":"13-43","issue":"1"},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 08.03.05"],"disp":"A control theorem for p-adic automorphic forms and Teitelbaum’s L-invariantThe Ramanujan journal","language":["eng"],"recId":"320521133"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"21 August 2019"}],"id":{"doi":["10.1007/s11139-019-00160-1"],"eki":["168106619X"]},"name":{"displayForm":["Peter Mathias Gräf"]}} | ||
| SRT | |a GRAEFPETERCONTROLTHE2120 | ||