Deep neural networks are superior to dermatologists in melanoma image classification

Background - Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level precision. However, a statistically significant improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brinker, Titus Josef (VerfasserIn) , Enk, Alexander (VerfasserIn) , Holland-Letz, Tim (VerfasserIn) , Utikal, Jochen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 August 2019
In: European journal of cancer
Year: 2019, Jahrgang: 119, Pages: 11-17
ISSN:1879-0852
DOI:10.1016/j.ejca.2019.05.023
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.ejca.2019.05.023
Verlag: http://www.sciencedirect.com/science/article/pii/S0959804919303491
Volltext
Verfasserangaben:Titus J. Brinker, Achim Hekler, Alexander H. Enk, Carola Berking, Sebastian Haferkamp, Axel Hauschild, Michael Weichenthal, Joachim Klode, Dirk Schadendorf, Tim Holland-Letz, Christof von Kalle, Stefan Fröhling, Bastian Schilling, Jochen S. Utikal

MARC

LEADER 00000caa a2200000 c 4500
001 168115319X
003 DE-627
005 20240323101643.0
007 cr uuu---uuuuu
008 191106s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2019.05.023  |2 doi 
035 |a (DE-627)168115319X 
035 |a (DE-599)KXP168115319X 
035 |a (OCoLC)1341250379 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
245 1 0 |a Deep neural networks are superior to dermatologists in melanoma image classification  |c Titus J. Brinker, Achim Hekler, Alexander H. Enk, Carola Berking, Sebastian Haferkamp, Axel Hauschild, Michael Weichenthal, Joachim Klode, Dirk Schadendorf, Tim Holland-Letz, Christof von Kalle, Stefan Fröhling, Bastian Schilling, Jochen S. Utikal 
264 1 |c 8 August 2019 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.11.2019 
520 |a Background - Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level precision. However, a statistically significant improvement compared with dermatologist classification has not been reported to date. - Methods - For this comparative study, 4204 biopsy-proven images of melanoma and nevi (1:1) were used for the training of a convolutional neural network (CNN). New techniques of deep learning were integrated. For the experiment, an additional 804 biopsy-proven dermoscopic images of melanoma and nevi (1:1) were randomly presented to dermatologists of nine German university hospitals, who evaluated the quality of each image and stated their recommended treatment (19,296 recommendations in total). Three McNemar's tests comparing the results of the CNN's test runs in terms of sensitivity, specificity and overall correctness were predefined as the main outcomes. - Findings - The respective sensitivity and specificity of lesion classification by the dermatologists were 67.2% (95% confidence interval [CI]: 62.6%-71.7%) and 62.2% (95% CI: 57.6%-66.9%). In comparison, the trained CNN achieved a higher sensitivity of 82.3% (95% CI: 78.3%-85.7%) and a higher specificity of 77.9% (95% CI: 73.8%-81.8%). The three McNemar's tests in 2 × 2 tables all reached a significance level of p < 0.001. This significance level was sustained for both subgroups. - Interpretation - For the first time, automated dermoscopic melanoma image classification was shown to be significantly superior to both junior and board-certified dermatologists (p < 0.001). 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Melanoma 
650 4 |a Skin cancer 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Holland-Letz, Tim  |e VerfasserIn  |0 (DE-588)142336491  |0 (DE-627)658880470  |0 (DE-576)343311291  |4 aut 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 119(2019), Seite 11-17  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Deep neural networks are superior to dermatologists in melanoma image classification 
773 1 8 |g volume:119  |g year:2019  |g pages:11-17  |g extent:7  |a Deep neural networks are superior to dermatologists in melanoma image classification 
856 4 0 |u https://doi.org/10.1016/j.ejca.2019.05.023  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0959804919303491  |x Verlag 
951 |a AR 
992 |a 20191106 
993 |a Article 
994 |a 2019 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 14  |y j 
998 |g 142336491  |a Holland-Letz, Tim  |m 142336491:Holland-Letz, Tim  |d 50000  |e 50000PH142336491  |k 0/50000/  |p 10 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN168115319X  |e 3538029202 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Titus J. Brinker, Achim Hekler, Alexander H. Enk, Carola Berking, Sebastian Haferkamp, Axel Hauschild, Michael Weichenthal, Joachim Klode, Dirk Schadendorf, Tim Holland-Letz, Christof von Kalle, Stefan Fröhling, Bastian Schilling, Jochen S. Utikal"]},"recId":"168115319X","note":["Gesehen am 06.11.2019"],"id":{"doi":["10.1016/j.ejca.2019.05.023"],"eki":["168115319X"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"origin":[{"dateIssuedDisp":"8 August 2019","dateIssuedKey":"2019"}],"person":[{"role":"aut","family":"Brinker","display":"Brinker, Titus Josef","given":"Titus Josef"},{"family":"Enk","display":"Enk, Alexander","given":"Alexander","role":"aut"},{"family":"Holland-Letz","display":"Holland-Letz, Tim","given":"Tim","role":"aut"},{"role":"aut","display":"Utikal, Jochen","family":"Utikal","given":"Jochen"}],"physDesc":[{"extent":"7 S."}],"title":[{"title":"Deep neural networks are superior to dermatologists in melanoma image classification","title_sort":"Deep neural networks are superior to dermatologists in melanoma image classification"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"display":"European Organization for Research on Treatment of Cancer","role":"isb"},{"role":"isb","display":"European Association for Cancer Research"},{"role":"isb","display":"European School of Oncology"}],"language":["eng"],"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"origin":[{"dateIssuedDisp":"1992-","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992","publisher":"Elsevier ; Pergamon Press"}],"titleAlt":[{"title":"EJC online"}],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"part":{"pages":"11-17","text":"119(2019), Seite 11-17","year":"2019","extent":"7","volume":"119"},"disp":"Deep neural networks are superior to dermatologists in melanoma image classificationEuropean journal of cancer","pubHistory":["28.1992 -"],"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"recId":"266883400"}]} 
SRT |a BRINKERTITDEEPNEURAL8201