Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data

Recent research revealed the superiority of artificial intelligence over dermatologists to diagnose melanoma from images. However, 30-50% of all melanomas and more than half of those in young patients evolve from initially benign lesions. Despite its high relevance for melanoma screening, neither cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sondermann, Wiebke (VerfasserIn) , Utikal, Jochen (VerfasserIn) , Enk, Alexander (VerfasserIn) , Fröhling, Stefan (VerfasserIn) , Kalle, Christof von (VerfasserIn) , Brinker, Titus Josef (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 August 2019
In: European journal of cancer
Year: 2019, Jahrgang: 119, Pages: 30-34
ISSN:1879-0852
DOI:10.1016/j.ejca.2019.07.009
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.ejca.2019.07.009
Verlag: http://www.sciencedirect.com/science/article/pii/S0959804919304095
Volltext
Verfasserangaben:Wiebke Sondermann, Jochen Sven Utikal, Alexander H. Enk, Dirk Schadendorf, Joachim Klode, Axel Hauschild, Michael Weichenthal, Lars E. French, Carola Berking, Bastian Schilling, Sebastian Haferkamp, Stefan Fröhling, Christof von Kalle, Titus J. Brinker

MARC

LEADER 00000caa a2200000 c 4500
001 1681159090
003 DE-627
005 20220817020544.0
007 cr uuu---uuuuu
008 191106s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2019.07.009  |2 doi 
035 |a (DE-627)1681159090 
035 |a (DE-599)KXP1681159090 
035 |a (OCoLC)1341250400 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Sondermann, Wiebke  |e VerfasserIn  |0 (DE-588)1198953756  |0 (DE-627)1681162121  |4 aut 
245 1 0 |a Prediction of melanoma evolution in melanocytic nevi via artificial intelligence  |b A call for prospective data  |c Wiebke Sondermann, Jochen Sven Utikal, Alexander H. Enk, Dirk Schadendorf, Joachim Klode, Axel Hauschild, Michael Weichenthal, Lars E. French, Carola Berking, Bastian Schilling, Sebastian Haferkamp, Stefan Fröhling, Christof von Kalle, Titus J. Brinker 
264 1 |c 8 August 2019 
300 |a 5 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.11.2019 
520 |a Recent research revealed the superiority of artificial intelligence over dermatologists to diagnose melanoma from images. However, 30-50% of all melanomas and more than half of those in young patients evolve from initially benign lesions. Despite its high relevance for melanoma screening, neither clinicians nor computers are yet able to reliably predict a nevus’ oncologic transformation. The cause of this lies in the static nature of lesion presentation in the current standard of care, both for clinicians and algorithms. The status quo makes it difficult to train algorithms (and clinicians) to precisely assess the likelihood of a benign skin lesion to transform into melanoma. In addition, it inhibits the precision of current algorithms since ‘evolution’ image features may not be part of their decision. The current literature reveals certain types of melanocytic nevi (i.e. ‘spitzoid’ or ‘dysplastic’ nevi) and criteria (i.e. visible vasculature) that, in general, appear to have a higher chance to transform into melanoma. However, owing to the cumulative nature of oncogenic mutations in melanoma, a more fine-grained early morphologic footprint is likely to be detectable by an algorithm. In this perspective article, the concept of melanoma prediction is further explored by the discussion of the evolution of melanoma, the concept for training of such a nevi classifier and the implications of early melanoma prediction for clinical practice. In conclusion, the authors believe that artificial intelligence trained on prospective image data could be transformative for skin cancer diagnostics by (a) predicting melanoma before it occurs (i.e. pre-in situ) and (b) further enhancing the accuracy of current melanoma classifiers. Necessary prospective images for this research are obtained via free mole-monitoring mobile apps. 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Melanoma 
650 4 |a Prediction 
650 4 |a Skin cancer 
700 1 |a Utikal, Jochen  |d 1974-  |e VerfasserIn  |0 (DE-588)1026463750  |0 (DE-627)726765015  |0 (DE-576)371816580  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Fröhling, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)120890046  |0 (DE-627)080950302  |0 (DE-576)188733930  |4 aut 
700 1 |a Kalle, Christof von  |d 1962-  |e VerfasserIn  |0 (DE-588)1036481115  |0 (DE-627)75107926X  |0 (DE-576)168957396  |4 aut 
700 1 |a Brinker, Titus Josef  |d 1990-  |e VerfasserIn  |0 (DE-588)1156309395  |0 (DE-627)1018860487  |0 (DE-576)502097434  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 119(2019), Seite 30-34  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Prediction of melanoma evolution in melanocytic nevi via artificial intelligence A call for prospective data 
773 1 8 |g volume:119  |g year:2019  |g pages:30-34  |g extent:5  |a Prediction of melanoma evolution in melanocytic nevi via artificial intelligence A call for prospective data 
787 0 8 |i Errata  |a Sondermann, Wiebke  |t Corrigendum to ‘Prediction of melanoma evolution in melanocytic nevi via artificial intelligence  |d 2019  |w (DE-627)168927722X 
856 4 0 |u https://doi.org/10.1016/j.ejca.2019.07.009  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0959804919304095  |x Verlag 
951 |a AR 
992 |a 20191106 
993 |a Article 
994 |a 2019 
998 |g 1026463750  |a Utikal, Jochen  |m 1026463750:Utikal, Jochen  |d 60000  |e 60000PU1026463750  |k 0/60000/  |p 2 
998 |g 1156309395  |a Brinker, Titus Josef  |m 1156309395:Brinker, Titus Josef  |d 910000  |d 911300  |e 910000PB1156309395  |e 911300PB1156309395  |k 0/910000/  |k 1/910000/911300/  |p 14  |y j 
998 |g 1036481115  |a Kalle, Christof von  |m 1036481115:Kalle, Christof von  |d 50000  |e 50000PK1036481115  |k 0/50000/  |p 13 
998 |g 120890046  |a Fröhling, Stefan  |m 120890046:Fröhling, Stefan  |d 50000  |e 50000PF120890046  |k 0/50000/  |p 12 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 3 
999 |a KXP-PPN1681159090  |e 3538041725 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"dateIssuedDisp":"1992-","publisher":"Elsevier ; Pergamon Press","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1992"}],"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"role":"isb","display":"European School of Oncology"}],"title":[{"title":"European journal of cancer","title_sort":"European journal of cancer"}],"id":{"eki":["266883400"],"zdb":["1468190-0"],"issn":["1879-0852"]},"part":{"year":"2019","extent":"5","pages":"30-34","volume":"119","text":"119(2019), Seite 30-34"},"note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"recId":"266883400","disp":"Prediction of melanoma evolution in melanocytic nevi via artificial intelligence A call for prospective dataEuropean journal of cancer","language":["eng"],"titleAlt":[{"title":"EJC online"}],"pubHistory":["28.1992 -"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"note":["Gesehen am 06.11.2019"],"physDesc":[{"extent":"5 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.ejca.2019.07.009"],"eki":["1681159090"]},"language":["eng"],"title":[{"title":"Prediction of melanoma evolution in melanocytic nevi via artificial intelligence","subtitle":"A call for prospective data","title_sort":"Prediction of melanoma evolution in melanocytic nevi via artificial intelligence"}],"person":[{"role":"aut","family":"Sondermann","display":"Sondermann, Wiebke","given":"Wiebke"},{"role":"aut","family":"Utikal","given":"Jochen","display":"Utikal, Jochen"},{"role":"aut","given":"Alexander","display":"Enk, Alexander","family":"Enk"},{"family":"Fröhling","given":"Stefan","display":"Fröhling, Stefan","role":"aut"},{"role":"aut","family":"Kalle","display":"Kalle, Christof von","given":"Christof von"},{"display":"Brinker, Titus Josef","given":"Titus Josef","family":"Brinker","role":"aut"}],"recId":"1681159090","name":{"displayForm":["Wiebke Sondermann, Jochen Sven Utikal, Alexander H. Enk, Dirk Schadendorf, Joachim Klode, Axel Hauschild, Michael Weichenthal, Lars E. French, Carola Berking, Bastian Schilling, Sebastian Haferkamp, Stefan Fröhling, Christof von Kalle, Titus J. Brinker"]},"origin":[{"dateIssuedDisp":"8 August 2019","dateIssuedKey":"2019"}]} 
SRT |a SONDERMANNPREDICTION8201