Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying

IntroductionThe most common way of assessing surgical performance is by expert raters to view a surgical task and rate a trainee’s performance. However, there is huge potential for automated skill assessment and workflow analysis using modern technology. The aim of the present study was to evaluate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kowalewski, Karl-Friedrich (VerfasserIn) , Garrow, Carly R. (VerfasserIn) , Schmidt, Mona Wanda (VerfasserIn) , Benner, Laura (VerfasserIn) , Müller, Beat P. (VerfasserIn) , Nickel, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [November 2019]
In: Surgical endoscopy and other interventional techniques
Year: 2019, Jahrgang: 33, Heft: 11, Pages: 3732-3740
ISSN:1432-2218
DOI:10.1007/s00464-019-06667-4
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/s00464-019-06667-4
Volltext
Verfasserangaben:Karl-Friedrich Kowalewski, Carly R. Garrow, Mona W. Schmidt, Laura Benner, Beat P. Müller-Stich, Felix Nickel

MARC

LEADER 00000caa a2200000 c 4500
001 1681174995
003 DE-627
005 20220817020715.0
007 cr uuu---uuuuu
008 191106s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00464-019-06667-4  |2 doi 
035 |a (DE-627)1681174995 
035 |a (DE-599)KXP1681174995 
035 |a (OCoLC)1341250342 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kowalewski, Karl-Friedrich  |d 1989-  |e VerfasserIn  |0 (DE-588)1100724192  |0 (DE-627)859518825  |0 (DE-576)469770740  |4 aut 
245 1 0 |a Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying  |c Karl-Friedrich Kowalewski, Carly R. Garrow, Mona W. Schmidt, Laura Benner, Beat P. Müller-Stich, Felix Nickel 
264 1 |c [November 2019] 
300 |b 1 Diagramm 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First online: 21 February 2019 
500 |a Gesehen am 06.11.2019 
520 |a IntroductionThe most common way of assessing surgical performance is by expert raters to view a surgical task and rate a trainee’s performance. However, there is huge potential for automated skill assessment and workflow analysis using modern technology. The aim of the present study was to evaluate machine learning (ML) algorithms using the data of a Myo armband as a sensor device for skills level assessment and phase detection in laparoscopic training.Materials and methodsParticipants of three experience levels in laparoscopy performed a suturing and knot tying task on silicon models. Experts rated performance using Objective Structured Assessment of Surgical Skills (OSATS). Participants wore Myo armbands (Thalmic Labs™, Ontario, Canada) to record acceleration, angular velocity, orientation, and Euler orientation. ML algorithms (decision forest, neural networks, boosted decision tree) were compared for skill level assessment and phase detection.Results28 participants (8 beginner, 10 intermediate, 10 expert) were included, and 99 knots were available for analysis. A neural network regression model had the lowest mean absolute error in predicting OSATS score (3.7 ± 0.6 points, r2 = 0.03 ± 0.81; OSATS min.-max.: 4-37 points). An ensemble of binary-class neural networks yielded the highest accuracy in predicting skill level (beginners: 82.2% correctly identified, intermediate: 3.0%, experts: 79.5%) whereas standard statistical analysis failed to discriminate between skill levels. Phase detection on raw data showed the best results with a multi-class decision jungle (average 16% correctly identified), but improved to 43% average accuracy with two-class boosted decision trees after Dynamic time warping (DTW) application.ConclusionModern machine learning algorithms aid in interpreting complex surgical motion data, even when standard analysis fails. Dynamic time warping offers the potential to process and compare surgical motion data in order to allow automated surgical workflow detection. However, further research is needed to interpret and standardize available data and improve sensor accuracy. 
650 4 |a Artificial intelligence 
650 4 |a Electromyography 
650 4 |a Laparoscopic training 
650 4 |a Laparoscopy 
650 4 |a Machine learning 
650 4 |a Myo armband 
650 4 |a Neural networks 
650 4 |a Skill assessment 
650 4 |a Surgical education 
650 4 |a Workflow analysis 
700 1 |a Garrow, Carly R.  |e VerfasserIn  |0 (DE-588)1100724990  |0 (DE-627)859520196  |0 (DE-576)469771925  |4 aut 
700 1 |a Schmidt, Mona Wanda  |d 1994-  |e VerfasserIn  |0 (DE-588)1128102269  |0 (DE-627)882387626  |0 (DE-576)485693429  |4 aut 
700 1 |a Benner, Laura  |d 1990-  |e VerfasserIn  |0 (DE-588)1155943597  |0 (DE-627)1018499296  |0 (DE-576)501946616  |4 aut 
700 1 |a Müller, Beat P.  |d 1971-  |e VerfasserIn  |0 (DE-588)14066209X  |0 (DE-627)70374819X  |0 (DE-576)317992287  |4 aut 
700 1 |a Nickel, Felix  |d 1982-  |e VerfasserIn  |0 (DE-588)1067980059  |0 (DE-627)819414875  |0 (DE-576)427122619  |4 aut 
773 0 8 |i Enthalten in  |t Surgical endoscopy and other interventional techniques  |d New York : Springer-Verlag, 2002  |g 33(2019), 11, Seite 3732-3740  |h Online-Ressource  |w (DE-627)254909620  |w (DE-600)1463171-4  |w (DE-576)074754106  |x 1432-2218  |7 nnas  |a Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying 
773 1 8 |g volume:33  |g year:2019  |g number:11  |g pages:3732-3740  |g extent:9  |a Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying 
856 4 0 |u https://doi.org/10.1007/s00464-019-06667-4  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191106 
993 |a Article 
994 |a 2019 
998 |g 1067980059  |a Nickel, Felix  |m 1067980059:Nickel, Felix  |d 910000  |d 910200  |d 50000  |e 910000PN1067980059  |e 910200PN1067980059  |e 50000PN1067980059  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 6  |y j 
998 |g 14066209X  |a Müller, Beat P.  |m 14066209X:Müller, Beat P.  |d 910000  |d 910200  |d 50000  |e 910000PM14066209X  |e 910200PM14066209X  |e 50000PM14066209X  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 5 
998 |g 1155943597  |a Benner, Laura  |m 1155943597:Benner, Laura  |d 910000  |d 999701  |e 910000PB1155943597  |e 999701PB1155943597  |k 0/910000/  |k 1/910000/999701/  |p 4 
998 |g 1128102269  |a Schmidt, Mona Wanda  |m 1128102269:Schmidt, Mona Wanda  |d 50000  |e 50000PS1128102269  |k 0/50000/  |p 3 
998 |g 1100724990  |a Garrow, Carly R.  |m 1100724990:Garrow, Carly R.  |p 2 
998 |g 1100724192  |a Kowalewski, Karl-Friedrich  |m 1100724192:Kowalewski, Karl-Friedrich  |d 60000  |e 60000PK1100724192  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1681174995  |e 3538077312 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1681174995","origin":[{"dateIssuedDisp":"[November 2019]","dateIssuedKey":"2019"}],"relHost":[{"note":["Gesehen am 19.06.24"],"disp":"Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tyingSurgical endoscopy and other interventional techniques","id":{"zdb":["1463171-4"],"issn":["1432-2218"],"eki":["254909620"]},"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"254909620","origin":[{"dateIssuedKey":"2002","dateIssuedDisp":"2002-","publisher":"Springer-Verlag","publisherPlace":"New York"}],"language":["eng"],"part":{"issue":"11","pages":"3732-3740","extent":"9","volume":"33","text":"33(2019), 11, Seite 3732-3740","year":"2019"},"title":[{"title_sort":"Surgical endoscopy and other interventional techniques","subtitle":"official journal of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) and European Association for Endoscopic Surgery (E.A.E.S.)","title":"Surgical endoscopy and other interventional techniques"}],"pubHistory":["Volume 16, issue 1 (January 2002)-"]}],"note":["First online: 21 February 2019","Gesehen am 06.11.2019"],"id":{"eki":["1681174995"],"doi":["10.1007/s00464-019-06667-4"]},"physDesc":[{"extent":"9 S.","noteIll":"1 Diagramm"}],"name":{"displayForm":["Karl-Friedrich Kowalewski, Carly R. Garrow, Mona W. Schmidt, Laura Benner, Beat P. Müller-Stich, Felix Nickel"]},"person":[{"family":"Kowalewski","role":"aut","given":"Karl-Friedrich","display":"Kowalewski, Karl-Friedrich"},{"family":"Garrow","display":"Garrow, Carly R.","role":"aut","given":"Carly R."},{"display":"Schmidt, Mona Wanda","given":"Mona Wanda","role":"aut","family":"Schmidt"},{"role":"aut","given":"Laura","display":"Benner, Laura","family":"Benner"},{"given":"Beat P.","role":"aut","display":"Müller, Beat P.","family":"Müller"},{"given":"Felix","role":"aut","display":"Nickel, Felix","family":"Nickel"}],"language":["eng"],"title":[{"title":"Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying","title_sort":"Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying"}]} 
SRT |a KOWALEWSKISENSORBASE2019