The asymptotic error of chaos expansion approximations for stochastic differential equations

In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huschto, Tony (VerfasserIn) , Podolskij, Mark (VerfasserIn) , Sager, Sebastian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 April 2019
In: Modern stochastics: theory and applications
Year: 2019, Jahrgang: 6, Heft: 2, Pages: 145-165
ISSN:2351-6054
DOI:10.15559/19-VMSTA133
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.15559/19-VMSTA133
Verlag, lizenzpflichtig, Volltext: https://www.vmsta.org/journal/VMSTA/article/155
Volltext
Verfasserangaben:Tony Huschto, Mark Podolskij, Sebastian Sager

MARC

LEADER 00000caa a2200000 c 4500
001 1682370089
003 DE-627
005 20220817162037.0
007 cr uuu---uuuuu
008 191121s2019 xx |||||o 00| ||eng c
024 7 |a 10.15559/19-vmsta133  |2 doi 
035 |a (DE-627)1682370089 
035 |a (DE-599)KXP1682370089 
035 |a (OCoLC)1341278290 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Huschto, Tony  |e VerfasserIn  |0 (DE-588)1064714137  |0 (DE-627)814422780  |0 (DE-576)424072467  |4 aut 
245 1 4 |a The asymptotic error of chaos expansion approximations for stochastic differential equations  |c Tony Huschto, Mark Podolskij, Sebastian Sager 
264 1 |c 23 April 2019 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.06.2020 
520 |a In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus. 
700 1 |a Podolskij, Mark  |d 1979-  |e VerfasserIn  |0 (DE-588)131883909  |0 (DE-627)51596252X  |0 (DE-576)298814277  |4 aut 
700 1 |a Sager, Sebastian  |d 1975-  |e VerfasserIn  |0 (DE-588)134228650  |0 (DE-627)563402520  |0 (DE-576)300389973  |4 aut 
773 0 8 |i Enthalten in  |t Modern stochastics: theory and applications  |d [Vilnius] : VTeX, 2014  |g 6(2019), 2, Seite 145-165  |h Online-Ressource  |w (DE-627)866211764  |w (DE-600)2866301-9  |w (DE-576)476443059  |x 2351-6054  |7 nnas  |a The asymptotic error of chaos expansion approximations for stochastic differential equations 
773 1 8 |g volume:6  |g year:2019  |g number:2  |g pages:145-165  |g extent:21  |a The asymptotic error of chaos expansion approximations for stochastic differential equations 
856 4 0 |u https://doi.org/10.15559/19-VMSTA133  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.vmsta.org/journal/VMSTA/article/155  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200619 
993 |a Article 
994 |a 2019 
998 |g 1064714137  |a Huschto, Tony  |m 1064714137:Huschto, Tony  |d 110000  |d 110001  |e 110000PH1064714137  |e 110001PH1064714137  |k 0/110000/  |k 1/110000/110001/  |p 1  |x j 
999 |a KXP-PPN1682370089  |e 3688813790 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Tony Huschto, Mark Podolskij, Sebastian Sager"]},"id":{"eki":["1682370089"],"doi":["10.15559/19-vmsta133"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"23 April 2019"}],"relHost":[{"part":{"pages":"145-165","issue":"2","year":"2019","extent":"21","volume":"6","text":"6(2019), 2, Seite 145-165"},"pubHistory":["Vol. 1, no 1 (2014)-"],"recId":"866211764","language":["eng"],"note":["Gesehen am 04.08.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The asymptotic error of chaos expansion approximations for stochastic differential equationsModern stochastics: theory and applications","title":[{"title":"Modern stochastics: theory and applications","title_sort":"Modern stochastics: theory and applications"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2351-6054"],"zdb":["2866301-9"],"eki":["866211764"]},"origin":[{"dateIssuedKey":"2014","publisher":"VTeX","dateIssuedDisp":"2014-","publisherPlace":"[Vilnius]"}]}],"physDesc":[{"extent":"21 S."}],"person":[{"given":"Tony","family":"Huschto","role":"aut","display":"Huschto, Tony","roleDisplay":"VerfasserIn"},{"display":"Podolskij, Mark","roleDisplay":"VerfasserIn","role":"aut","family":"Podolskij","given":"Mark"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sager, Sebastian","given":"Sebastian","family":"Sager"}],"title":[{"title_sort":"asymptotic error of chaos expansion approximations for stochastic differential equations","title":"The asymptotic error of chaos expansion approximations for stochastic differential equations"}],"recId":"1682370089","language":["eng"],"note":["Gesehen am 19.06.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a HUSCHTOTONASYMPTOTIC2320