The asymptotic error of chaos expansion approximations for stochastic differential equations
In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. W...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
23 April 2019
|
| In: |
Modern stochastics: theory and applications
Year: 2019, Jahrgang: 6, Heft: 2, Pages: 145-165 |
| ISSN: | 2351-6054 |
| DOI: | 10.15559/19-VMSTA133 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.15559/19-VMSTA133 Verlag, lizenzpflichtig, Volltext: https://www.vmsta.org/journal/VMSTA/article/155 |
| Verfasserangaben: | Tony Huschto, Mark Podolskij, Sebastian Sager |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1682370089 | ||
| 003 | DE-627 | ||
| 005 | 20220817162037.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 191121s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.15559/19-vmsta133 |2 doi | |
| 035 | |a (DE-627)1682370089 | ||
| 035 | |a (DE-599)KXP1682370089 | ||
| 035 | |a (OCoLC)1341278290 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Huschto, Tony |e VerfasserIn |0 (DE-588)1064714137 |0 (DE-627)814422780 |0 (DE-576)424072467 |4 aut | |
| 245 | 1 | 4 | |a The asymptotic error of chaos expansion approximations for stochastic differential equations |c Tony Huschto, Mark Podolskij, Sebastian Sager |
| 264 | 1 | |c 23 April 2019 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.06.2020 | ||
| 520 | |a In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus. | ||
| 700 | 1 | |a Podolskij, Mark |d 1979- |e VerfasserIn |0 (DE-588)131883909 |0 (DE-627)51596252X |0 (DE-576)298814277 |4 aut | |
| 700 | 1 | |a Sager, Sebastian |d 1975- |e VerfasserIn |0 (DE-588)134228650 |0 (DE-627)563402520 |0 (DE-576)300389973 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Modern stochastics: theory and applications |d [Vilnius] : VTeX, 2014 |g 6(2019), 2, Seite 145-165 |h Online-Ressource |w (DE-627)866211764 |w (DE-600)2866301-9 |w (DE-576)476443059 |x 2351-6054 |7 nnas |a The asymptotic error of chaos expansion approximations for stochastic differential equations |
| 773 | 1 | 8 | |g volume:6 |g year:2019 |g number:2 |g pages:145-165 |g extent:21 |a The asymptotic error of chaos expansion approximations for stochastic differential equations |
| 856 | 4 | 0 | |u https://doi.org/10.15559/19-VMSTA133 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.vmsta.org/journal/VMSTA/article/155 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200619 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1064714137 |a Huschto, Tony |m 1064714137:Huschto, Tony |d 110000 |d 110001 |e 110000PH1064714137 |e 110001PH1064714137 |k 0/110000/ |k 1/110000/110001/ |p 1 |x j | ||
| 999 | |a KXP-PPN1682370089 |e 3688813790 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Tony Huschto, Mark Podolskij, Sebastian Sager"]},"id":{"eki":["1682370089"],"doi":["10.15559/19-vmsta133"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"23 April 2019"}],"relHost":[{"part":{"pages":"145-165","issue":"2","year":"2019","extent":"21","volume":"6","text":"6(2019), 2, Seite 145-165"},"pubHistory":["Vol. 1, no 1 (2014)-"],"recId":"866211764","language":["eng"],"note":["Gesehen am 04.08.2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The asymptotic error of chaos expansion approximations for stochastic differential equationsModern stochastics: theory and applications","title":[{"title":"Modern stochastics: theory and applications","title_sort":"Modern stochastics: theory and applications"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2351-6054"],"zdb":["2866301-9"],"eki":["866211764"]},"origin":[{"dateIssuedKey":"2014","publisher":"VTeX","dateIssuedDisp":"2014-","publisherPlace":"[Vilnius]"}]}],"physDesc":[{"extent":"21 S."}],"person":[{"given":"Tony","family":"Huschto","role":"aut","display":"Huschto, Tony","roleDisplay":"VerfasserIn"},{"display":"Podolskij, Mark","roleDisplay":"VerfasserIn","role":"aut","family":"Podolskij","given":"Mark"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sager, Sebastian","given":"Sebastian","family":"Sager"}],"title":[{"title_sort":"asymptotic error of chaos expansion approximations for stochastic differential equations","title":"The asymptotic error of chaos expansion approximations for stochastic differential equations"}],"recId":"1682370089","language":["eng"],"note":["Gesehen am 19.06.2020"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} | ||
| SRT | |a HUSCHTOTONASYMPTOTIC2320 | ||