Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction

Sepsis is the leading cause of death in non-coronary intensive care units. Moreover, a delay of antibiotic treatment of patients with severe sepsis by only few hours is associated with increased mortality. This insight makes accurate models for early prediction of sepsis a key task in machine learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schamoni, Shigehiko (VerfasserIn) , Lindner, Holger A. (VerfasserIn) , Schneider-Lindner, Verena (VerfasserIn) , Thiel, Manfred (VerfasserIn) , Riezler, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 September 2019
In: Artificial intelligence in medicine
Year: 2019, Jahrgang: 100
ISSN:1873-2860
DOI:10.1016/j.artmed.2019.101725
Online-Zugang:Verlag, Volltext: https://doi.org/10.1016/j.artmed.2019.101725
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0933365718305700
Volltext
Verfasserangaben:Shigehiko Schamoni, Holger A. Lindner, Verena Schneider-Lindner, Manfred Thiel, Stefan Riezler

MARC

LEADER 00000caa a2200000 c 4500
001 168333762X
003 DE-627
005 20220817162546.0
007 cr uuu---uuuuu
008 191125s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.artmed.2019.101725  |2 doi 
035 |a (DE-627)168333762X 
035 |a (DE-599)KXP168333762X 
035 |a (OCoLC)1341278599 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Schamoni, Shigehiko  |d 19XX-  |e VerfasserIn  |0 (DE-588)1052544339  |0 (DE-627)788599356  |0 (DE-576)408244011  |4 aut 
245 1 0 |a Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction  |c Shigehiko Schamoni, Holger A. Lindner, Verena Schneider-Lindner, Manfred Thiel, Stefan Riezler 
264 1 |c 24 September 2019 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.11.2019 
520 |a Sepsis is the leading cause of death in non-coronary intensive care units. Moreover, a delay of antibiotic treatment of patients with severe sepsis by only few hours is associated with increased mortality. This insight makes accurate models for early prediction of sepsis a key task in machine learning for healthcare. Previous approaches have achieved high AUROC by learning from electronic health records where sepsis labels were defined automatically following established clinical criteria. We argue that the practice of incorporating the clinical criteria that are used to automatically define ground truth sepsis labels as features of severity scoring models is inherently circular and compromises the validity of the proposed approaches. We propose to create an independent ground truth for sepsis research by exploiting implicit knowledge of clinical practitioners via an electronic questionnaire which records attending physicians’ daily judgements of patients’ sepsis status. We show that despite its small size, our dataset allows to achieve state-of-the-art AUROC scores. An inspection of learned weights for standardized features of the linear model lets us infer potentially surprising feature contributions and allows to interpret seemingly counterintuitive findings. 
650 4 |a Machine learning in health care 
650 4 |a Sepsis prediction 
700 1 |a Lindner, Holger A.  |d 1970-  |e VerfasserIn  |0 (DE-588)1079304797  |0 (DE-627)842320865  |0 (DE-576)452364469  |4 aut 
700 1 |a Schneider-Lindner, Verena  |d 1973-  |e VerfasserIn  |0 (DE-588)1067835016  |0 (DE-627)819242802  |0 (DE-576)426963466  |4 aut 
700 1 |a Thiel, Manfred  |d 1959-  |e VerfasserIn  |0 (DE-588)1029136874  |0 (DE-627)732482313  |0 (DE-576)376589213  |4 aut 
700 1 |a Riezler, Stefan  |e VerfasserIn  |0 (DE-588)1033925454  |0 (DE-627)743677528  |0 (DE-576)381607615  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence in medicine  |d Amsterdam [u.a.] : Elsevier Science, 1989  |g 100(2019) Artikel-Nummer 101725, 9 Seiten  |h Online-Ressource  |w (DE-627)320415627  |w (DE-600)2001878-2  |w (DE-576)098614916  |x 1873-2860  |7 nnas  |a Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction 
773 1 8 |g volume:100  |g year:2019  |g extent:9  |a Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction 
856 4 0 |u https://doi.org/10.1016/j.artmed.2019.101725  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0933365718305700  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191125 
993 |a Article 
994 |a 2019 
998 |g 1033925454  |a Riezler, Stefan  |m 1033925454:Riezler, Stefan  |d 90000  |d 90500  |e 90000PR1033925454  |e 90500PR1033925454  |k 0/90000/  |k 1/90000/90500/  |p 5  |y j 
998 |g 1029136874  |a Thiel, Manfred  |m 1029136874:Thiel, Manfred  |d 60000  |d 61600  |e 60000PT1029136874  |e 61600PT1029136874  |k 0/60000/  |k 1/60000/61600/  |p 4 
998 |g 1067835016  |a Schneider-Lindner, Verena  |m 1067835016:Schneider-Lindner, Verena  |d 60000  |d 61600  |e 60000PS1067835016  |e 61600PS1067835016  |k 0/60000/  |k 1/60000/61600/  |p 3 
998 |g 1079304797  |a Lindner, Holger A.  |m 1079304797:Lindner, Holger A.  |d 60000  |d 61600  |e 60000PL1079304797  |e 61600PL1079304797  |k 0/60000/  |k 1/60000/61600/  |p 2 
998 |g 1052544339  |a Schamoni, Shigehiko  |m 1052544339:Schamoni, Shigehiko  |d 700000  |d 708000  |e 700000PS1052544339  |e 708000PS1052544339  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN168333762X  |e 354946763X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Shigehiko Schamoni, Holger A. Lindner, Verena Schneider-Lindner, Manfred Thiel, Stefan Riezler"]},"recId":"168333762X","note":["Gesehen am 25.11.2019"],"person":[{"family":"Schamoni","display":"Schamoni, Shigehiko","given":"Shigehiko","role":"aut"},{"role":"aut","family":"Lindner","display":"Lindner, Holger A.","given":"Holger A."},{"family":"Schneider-Lindner","display":"Schneider-Lindner, Verena","given":"Verena","role":"aut"},{"display":"Thiel, Manfred","family":"Thiel","given":"Manfred","role":"aut"},{"given":"Stefan","display":"Riezler, Stefan","family":"Riezler","role":"aut"}],"title":[{"title_sort":"Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction","title":"Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction"}],"physDesc":[{"extent":"9 S."}],"relHost":[{"pubHistory":["1.1989 -"],"recId":"320415627","note":["Gesehen am 14.10.2020"],"disp":"Leveraging implicit expert knowledge for non-circular machine learning in sepsis predictionArtificial intelligence in medicine","title":[{"title_sort":"Artificial intelligence in medicine","subtitle":"AIM","title":"Artificial intelligence in medicine"}],"titleAlt":[{"title":"AIM"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"100(2019) Artikel-Nummer 101725, 9 Seiten","year":"2019","extent":"9","volume":"100"},"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"eki":["320415627"],"zdb":["2001878-2"],"issn":["1873-2860"]},"language":["eng"],"origin":[{"dateIssuedDisp":"1989-","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1989","publisher":"Elsevier Science"}]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.artmed.2019.101725"],"eki":["168333762X"]},"language":["eng"],"origin":[{"dateIssuedDisp":"24 September 2019","dateIssuedKey":"2019"}]} 
SRT |a SCHAMONISHLEVERAGING2420