A generative probabilistic model and discriminative extensions for brain lesion segmentation: with application to tumor and stroke

We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Menze, Bjoern (VerfasserIn) , Weber, Marc-André (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2016
In: IEEE transactions on medical imaging
Year: 2015, Jahrgang: 35, Heft: 4, Pages: 933-946
ISSN:1558-254X
DOI:10.1109/TMI.2015.2502596
Online-Zugang:Verlag, Volltext: https://doi.org/10.1109/TMI.2015.2502596
Verlag, Volltext: https://ieeexplore.ieee.org/document/7332941
Volltext
Verfasserangaben:Bjoern H. Menze, Koen Van Leemput, Danial Lashkari, Tammy Riklin-Raviv, Ezequiel Geremia, Esther Alberts, Philipp Gruber, Susanne Wegener, Marc-André Weber, Gabor Székely, Nicholas Ayache, and Polina Golland

MARC

LEADER 00000caa a2200000 c 4500
001 1683461053
003 DE-627
005 20220817164215.0
007 cr uuu---uuuuu
008 191125r20162015xx |||||o 00| ||eng c
024 7 |a 10.1109/TMI.2015.2502596  |2 doi 
035 |a (DE-627)1683461053 
035 |a (DE-599)KXP1683461053 
035 |a (OCoLC)1341278598 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Menze, Bjoern  |e VerfasserIn  |0 (DE-588)133358690  |0 (DE-627)54365902X  |0 (DE-576)299794148  |4 aut 
245 1 2 |a A generative probabilistic model and discriminative extensions for brain lesion segmentation  |b with application to tumor and stroke  |c Bjoern H. Menze, Koen Van Leemput, Danial Lashkari, Tammy Riklin-Raviv, Ezequiel Geremia, Esther Alberts, Philipp Gruber, Susanne Wegener, Marc-André Weber, Gabor Székely, Nicholas Ayache, and Polina Golland 
264 1 |c 2016 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date of Publication: 20 November 2015 
500 |a Gesehen am 25.11.2019 
520 |a We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation. 
534 |c 2015 
650 4 |a acute ischemic stroke 
650 4 |a Algorithms 
650 4 |a anatomical structure 
650 4 |a Bayes methods 
650 4 |a Bayes Theorem 
650 4 |a Biological system modeling 
650 4 |a biomedical MRI 
650 4 |a brain 
650 4 |a brain lesion segmentation 
650 4 |a Brain modeling 
650 4 |a Brain Neoplasms 
650 4 |a brain tumor imaging sequences 
650 4 |a BRATS glioma patient scans 
650 4 |a closed-form EM update equations 
650 4 |a discriminative extensions 
650 4 |a EM segmenter 
650 4 |a expectation-maximization 
650 4 |a extended discriminative -discriminative model 
650 4 |a fluid-filled structure 
650 4 |a Gaussian mixtures 
650 4 |a Gaussian processes 
650 4 |a generative probabilistic model 
650 4 |a Humans 
650 4 |a hyper-intense lesion 
650 4 |a hypo-intense lesion 
650 4 |a image segmentation 
650 4 |a latent atlas prior distribution 
650 4 |a lesion posterior distributions 
650 4 |a Lesions 
650 4 |a magnetic resonance imaging 
650 4 |a Mathematical model 
650 4 |a Medical diagnostic imaging 
650 4 |a medical image processing 
650 4 |a mixture models 
650 4 |a Models, Statistical 
650 4 |a MRI 
650 4 |a multidimensional images 
650 4 |a object segmentation 
650 4 |a Probabilistic logic 
650 4 |a probabilistic tissue atlas 
650 4 |a Stroke 
650 4 |a subacute ischemic stroke 
650 4 |a tumor 
700 1 |a Weber, Marc-André  |d 1973-  |e VerfasserIn  |0 (DE-588)142373044  |0 (DE-627)704211432  |0 (DE-576)330376802  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on medical imaging  |d New York, NY : Institute of Electrical and Electronics Engineers,, 1982  |g 35(2016), 4, Seite 933-946  |h Online-Ressource  |w (DE-627)341354759  |w (DE-600)2068206-2  |w (DE-576)105283061  |x 1558-254X  |7 nnas 
773 1 8 |g volume:35  |g year:2016  |g number:4  |g pages:933-946  |g extent:14  |a A generative probabilistic model and discriminative extensions for brain lesion segmentation with application to tumor and stroke 
856 4 0 |u https://doi.org/10.1109/TMI.2015.2502596  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/7332941  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20191125 
993 |a Article 
994 |a 2016 
998 |g 142373044  |a Weber, Marc-André  |m 142373044:Weber, Marc-André  |d 910000  |d 911400  |e 910000PW142373044  |e 911400PW142373044  |k 0/910000/  |k 1/910000/911400/  |p 9 
999 |a KXP-PPN1683461053  |e 3549719124 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Bjoern H. Menze, Koen Van Leemput, Danial Lashkari, Tammy Riklin-Raviv, Ezequiel Geremia, Esther Alberts, Philipp Gruber, Susanne Wegener, Marc-André Weber, Gabor Székely, Nicholas Ayache, and Polina Golland"]},"id":{"eki":["1683461053"],"doi":["10.1109/TMI.2015.2502596"]},"person":[{"display":"Menze, Bjoern","family":"Menze","role":"aut","given":"Bjoern"},{"display":"Weber, Marc-André","role":"aut","given":"Marc-André","family":"Weber"}],"relHost":[{"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"titleAlt":[{"title":"Transactions on medical imaging"}],"pubHistory":["1.1982(July) -"],"id":{"zdb":["2068206-2"],"issn":["1558-254X"],"eki":["341354759"]},"part":{"year":"2016","volume":"35","pages":"933-946","issue":"4","extent":"14","text":"35(2016), 4, Seite 933-946"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"341354759","disp":"Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging","origin":[{"publisher":"Institute of Electrical and Electronics Engineers, ; IEEE","publisherPlace":"New York, NY ; New York, NY","dateIssuedKey":"1982","dateIssuedDisp":"1982-"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 13.01.11"],"title":[{"subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society ...","title":"IEEE transactions on medical imaging","title_sort":"IEEE transactions on medical imaging"}]}],"origin":[{"dateIssuedDisp":"2016","dateIssuedKey":"2016"}],"note":["Date of Publication: 20 November 2015","Gesehen am 25.11.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"title":[{"title_sort":"generative probabilistic model and discriminative extensions for brain lesion segmentation","title":"A generative probabilistic model and discriminative extensions for brain lesion segmentation","subtitle":"with application to tumor and stroke"}],"physDesc":[{"extent":"14 S."}],"recId":"1683461053"} 
SRT |a MENZEBJOERGENERATIVE2016