Surface groups acting on CAT(-1) spaces

Harmonic map theory is used to show that a convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daskalopoulos, Georgios (VerfasserIn) , Mese, Chikako (VerfasserIn) , Sanders, Andrew (VerfasserIn) , Vdovina, Alina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Ergodic theory and dynamical systems
Year: 2017, Jahrgang: 39, Heft: 7, Pages: 1843-1856
ISSN:1469-4417
DOI:10.1017/etds.2017.103
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/etds.2017.103
Verlag, Volltext: https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/surface-groups-acting-on-textcat1-spaces/26F8A4B6AE66B734EA769C42A301E353
Volltext
Verfasserangaben:Georgios Daskalopoulos, Chikako Mese, Andrew Sanders and Alina Vdovina
Beschreibung
Zusammenfassung:Harmonic map theory is used to show that a convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This provides another proof of a result of Bonk and Kleiner. More generally, we show that the limit set of every convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - space has Hausdorff dimension - - - $\geq 1$ - - - , where the inequality is strict unless the action is Fuchsian.
Beschreibung:Published online by Cambridge University Press: 04 December 2017
"CAT(-1)" ist im Titel gesetzt in anderer Type als der übrige Text
Gesehen am 29.11.2019
Beschreibung:Online Resource
ISSN:1469-4417
DOI:10.1017/etds.2017.103