Surface groups acting on CAT(-1) spaces

Harmonic map theory is used to show that a convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daskalopoulos, Georgios (VerfasserIn) , Mese, Chikako (VerfasserIn) , Sanders, Andrew (VerfasserIn) , Vdovina, Alina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Ergodic theory and dynamical systems
Year: 2017, Jahrgang: 39, Heft: 7, Pages: 1843-1856
ISSN:1469-4417
DOI:10.1017/etds.2017.103
Online-Zugang:Verlag, Volltext: https://doi.org/10.1017/etds.2017.103
Verlag, Volltext: https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/surface-groups-acting-on-textcat1-spaces/26F8A4B6AE66B734EA769C42A301E353
Volltext
Verfasserangaben:Georgios Daskalopoulos, Chikako Mese, Andrew Sanders and Alina Vdovina

MARC

LEADER 00000caa a2200000 c 4500
001 1683811275
003 DE-627
005 20220817170822.0
007 cr uuu---uuuuu
008 191129r20192017xx |||||o 00| ||eng c
024 7 |a 10.1017/etds.2017.103  |2 doi 
035 |a (DE-627)1683811275 
035 |a (DE-599)KXP1683811275 
035 |a (OCoLC)1341279043 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Daskalopoulos, Georgios  |d 1963-  |e VerfasserIn  |0 (DE-588)1082355488  |0 (DE-627)847422712  |0 (DE-576)455371954  |4 aut 
245 1 0 |a Surface groups acting on CAT(-1) spaces  |c Georgios Daskalopoulos, Chikako Mese, Andrew Sanders and Alina Vdovina 
264 1 |c 2019 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online by Cambridge University Press: 04 December 2017 
500 |a "CAT(-1)" ist im Titel gesetzt in anderer Type als der übrige Text 
500 |a Gesehen am 29.11.2019 
520 |a Harmonic map theory is used to show that a convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This provides another proof of a result of Bonk and Kleiner. More generally, we show that the limit set of every convex cocompact surface group action on a - - - $\text{CAT}(-1)$ - - - space has Hausdorff dimension - - - $\geq 1$ - - - , where the inequality is strict unless the action is Fuchsian. 
534 |c 2017 
700 1 |a Mese, Chikako  |e VerfasserIn  |4 aut 
700 1 |a Sanders, Andrew  |e VerfasserIn  |0 (DE-588)1155603990  |0 (DE-627)101787834X  |0 (DE-576)501770526  |4 aut 
700 1 |a Vdovina, Alina  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Ergodic theory and dynamical systems  |d Cambridge, Mass. : Cambridge Univ. Press, 1981  |g 39(2019), 7, Seite 1843-1856  |h Online-Ressource  |w (DE-627)254235409  |w (DE-600)1461798-5  |w (DE-576)073260517  |x 1469-4417  |7 nnas  |a Surface groups acting on CAT(-1) spaces 
773 1 8 |g volume:39  |g year:2019  |g number:7  |g pages:1843-1856  |g extent:14  |a Surface groups acting on CAT(-1) spaces 
856 4 0 |u https://doi.org/10.1017/etds.2017.103  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/surface-groups-acting-on-textcat1-spaces/26F8A4B6AE66B734EA769C42A301E353  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191129 
993 |a Article 
994 |a 2019 
998 |g 1155603990  |a Sanders, Andrew  |m 1155603990:Sanders, Andrew  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PS1155603990  |e 110100PS1155603990  |e 110000PS1155603990  |e 110400PS1155603990  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 3 
999 |a KXP-PPN1683811275  |e 3551375984 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"id":{"doi":["10.1017/etds.2017.103"],"eki":["1683811275"]},"name":{"displayForm":["Georgios Daskalopoulos, Chikako Mese, Andrew Sanders and Alina Vdovina"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"id":{"eki":["254235409"],"zdb":["1461798-5"],"issn":["1469-4417"]},"origin":[{"publisherPlace":"Cambridge, Mass.","dateIssuedDisp":"1981-","dateIssuedKey":"1981","publisher":"Cambridge Univ. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Ergodic theory and dynamical systems","title_sort":"Ergodic theory and dynamical systems"}],"part":{"year":"2019","pages":"1843-1856","issue":"7","text":"39(2019), 7, Seite 1843-1856","volume":"39","extent":"14"},"pubHistory":["1.1981 -"],"recId":"254235409","language":["eng"],"note":["Gesehen am 15.04.24"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Surface groups acting on CAT(-1) spacesErgodic theory and dynamical systems"}],"title":[{"title":"Surface groups acting on CAT(-1) spaces","title_sort":"Surface groups acting on CAT(-1) spaces"}],"person":[{"role":"aut","display":"Daskalopoulos, Georgios","roleDisplay":"VerfasserIn","given":"Georgios","family":"Daskalopoulos"},{"display":"Mese, Chikako","roleDisplay":"VerfasserIn","role":"aut","family":"Mese","given":"Chikako"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Sanders, Andrew","given":"Andrew","family":"Sanders"},{"given":"Alina","family":"Vdovina","role":"aut","roleDisplay":"VerfasserIn","display":"Vdovina, Alina"}],"note":["Published online by Cambridge University Press: 04 December 2017","\"CAT(-1)\" ist im Titel gesetzt in anderer Type als der übrige Text","Gesehen am 29.11.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1683811275","language":["eng"]} 
SRT |a DASKALOPOUSURFACEGRO2019