Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC Cells from spatial-temporal image data

We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jagiella, Nick (VerfasserIn) , Müller, Benedikt (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 11, 2016
In: PLoS Computational Biology
Year: 2016, Jahrgang: 12, Heft: 2
ISSN:1553-7358
DOI:10.1371/journal.pcbi.1004412
Online-Zugang:Verlag, Volltext: https://doi.org/10.1371/journal.pcbi.1004412
Verlag: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004412
Volltext
Verfasserangaben:Nick Jagiella, Benedikt Müller, Margareta Müller, Irene E. Vignon-Clementel, Dirk Drasdo

MARC

LEADER 00000caa a2200000 c 4500
001 1683871650
003 DE-627
005 20220817171657.0
007 cr uuu---uuuuu
008 191202s2016 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pcbi.1004412  |2 doi 
035 |a (DE-627)1683871650 
035 |a (DE-599)KXP1683871650 
035 |a (OCoLC)1341279285 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Jagiella, Nick  |e VerfasserIn  |0 (DE-588)1200934385  |0 (DE-627)1684046696  |4 aut 
245 1 0 |a Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC Cells from spatial-temporal image data  |c Nick Jagiella, Benedikt Müller, Margareta Müller, Irene E. Vignon-Clementel, Dirk Drasdo 
264 1 |c February 11, 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.12.2019 
520 |a We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue organization processes. Importantly, calibrating the model with two nutriment-rich growth conditions, the outcome for two nutriment-poor growth conditions could be predicted. As the final model is however quite complex, incorporating many mechanisms, space, time, and stochastic processes, parameter identification is a challenge. This calls for more efficient strategies of imaging and image analysis, as well as of parameter identification in stochastic agent-based simulations. 
650 4 |a Apoptosis 
650 4 |a Cell cycle and cell division 
650 4 |a Cell death 
650 4 |a Extracellular matrix 
650 4 |a Glucose 
650 4 |a Glucose metabolism 
650 4 |a Oxygen 
650 4 |a Oxygen metabolism 
700 1 |a Müller, Benedikt  |e VerfasserIn  |0 (DE-588)1075739713  |0 (DE-627)833656244  |0 (DE-576)44460684X  |4 aut 
773 0 8 |i Enthalten in  |a Public Library of Science  |t PLoS Computational Biology  |d San Francisco, Calif. : Public Library of Science, 2005  |g 12(2016,2) Artikel-Nummer e1004412, 39 Seiten  |h Online-Ressource  |w (DE-627)491436017  |w (DE-600)2193340-6  |w (DE-576)273890492  |x 1553-7358  |7 nnas 
773 1 8 |g volume:12  |g year:2016  |g number:2  |a Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC Cells from spatial-temporal image data 
856 4 0 |u https://doi.org/10.1371/journal.pcbi.1004412  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004412  |x Verlag 
951 |a AR 
992 |a 20191202 
993 |a Article 
994 |a 2016 
998 |g 1075739713  |a Müller, Benedikt  |m 1075739713:Müller, Benedikt  |d 910000  |d 912000  |e 910000PM1075739713  |e 912000PM1075739713  |k 0/910000/  |k 1/910000/912000/  |p 2 
999 |a KXP-PPN1683871650  |e 3555361465 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Nick","family":"Jagiella","role":"aut","display":"Jagiella, Nick","roleDisplay":"VerfasserIn"},{"family":"Müller","given":"Benedikt","display":"Müller, Benedikt","roleDisplay":"VerfasserIn","role":"aut"}],"name":{"displayForm":["Nick Jagiella, Benedikt Müller, Margareta Müller, Irene E. Vignon-Clementel, Dirk Drasdo"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"February 11, 2016"}],"title":[{"title":"Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC Cells from spatial-temporal image data","title_sort":"Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC Cells from spatial-temporal image data"}],"id":{"eki":["1683871650"],"doi":["10.1371/journal.pcbi.1004412"]},"note":["Gesehen am 02.12.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"relHost":[{"title":[{"title_sort":"PLoS Computational Biology","title":"PLoS Computational Biology","subtitle":"a new community journal"}],"pubHistory":["1.2005 -"],"part":{"year":"2016","issue":"2","volume":"12","text":"12(2016,2) Artikel-Nummer e1004412, 39 Seiten"},"disp":"Public Library of SciencePLoS Computational Biology","note":["Gesehen am 23. November 2020"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"491436017","language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","display":"Public Library of Science","role":"aut"}],"origin":[{"publisherPlace":"San Francisco, Calif.","dateIssuedDisp":"2005-","publisher":"Public Library of Science","dateIssuedKey":"2005"}],"id":{"zdb":["2193340-6"],"eki":["491436017"],"issn":["1553-7358"]},"name":{"displayForm":["publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)"]},"physDesc":[{"extent":"Online-Ressource"}]}],"recId":"1683871650"} 
SRT |a JAGIELLANIINFERRINGG1120