Conditional variance forecasts for long-term stock returns

In this paper, we apply machine learning to forecast the conditional variance of long-term stock returns measured in excess of different benchmarks, considering the short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. In particular, we apply in a two-step procedur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mammen, Enno (VerfasserIn) , Nielsen, Jens Perch (VerfasserIn) , Scholz, Michael (VerfasserIn) , Sperlich, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Risks
Year: 2019, Jahrgang: 7, Heft: 4/113, Pages: 1-22
ISSN:2227-9091
DOI:10.3390/risks7040113
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei: https://doi.org/10.3390/risks7040113
Verlag, kostenfrei: https://www.mdpi.com/2227-9091/7/4/113/pdf
Resolving-System, kostenfrei: http://hdl.handle.net/10419/257951
Verlag, Terms of use: https://creativecommons.org/licenses/by/4.0/
Volltext
Verfasserangaben:Enno Mammen, Jens Perch Nielsen, Michael Scholz and Stefan Sperlich

MARC

LEADER 00000caa a2200000 c 4500
001 1684080657
003 DE-627
005 20250716205617.0
007 cr uuu---uuuuu
008 191203s2019 xx |||||o 00| ||eng c
024 7 |a 10.3390/risks7040113  |2 doi 
024 7 |a 10419/257951  |2 hdl 
035 |a (DE-627)1684080657 
035 |a (DE-599)KXP1684080657 
035 |a (OCoLC)1528006574 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
084 |a C14  |a C53  |a C58  |a G17  |a G22  |2 jelc 
100 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
245 1 0 |a Conditional variance forecasts for long-term stock returns  |c Enno Mammen, Jens Perch Nielsen, Michael Scholz and Stefan Sperlich 
264 1 |c 2019 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this paper, we apply machine learning to forecast the conditional variance of long-term stock returns measured in excess of different benchmarks, considering the short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. In particular, we apply in a two-step procedure a fully nonparametric local-linear smoother and choose the set of covariates as well as the smoothing parameters via cross-validation. We find that volatility forecastability is much less important at longer horizons regardless of the chosen model and that the homoscedastic historical average of the squared return prediction errors gives an adequate approximation of the unobserved realised conditional variance for both the one-year and five-year horizon. 
650 4 |a autocorrelation  |7 (dpeaa)DE-206 
650 4 |a benchmark  |7 (dpeaa)DE-206 
650 4 |a cross-validation  |7 (dpeaa)DE-206 
650 4 |a long-term forecasts  |7 (dpeaa)DE-206 
650 4 |a overlapping returns  |7 (dpeaa)DE-206 
650 4 |a prediction  |7 (dpeaa)DE-206 
650 4 |a stock return volatility  |7 (dpeaa)DE-206 
655 4 |0 (DE-206)49  |a Aufsatz in Zeitschrift  |5 DE-206 
700 1 |a Nielsen, Jens Perch  |e VerfasserIn  |0 (DE-588)171421698  |0 (DE-627)061621110  |0 (DE-576)132217368  |4 aut 
700 1 |a Scholz, Michael  |d 1977-  |e VerfasserIn  |0 (DE-588)1019385391  |0 (DE-627)690877587  |0 (DE-576)357930088  |4 aut 
700 1 |a Sperlich, Stefan  |d 1968-  |e VerfasserIn  |0 (DE-588)171758900  |0 (DE-627)06199989X  |0 (DE-576)354153498  |4 aut 
773 0 8 |i Enthalten in  |t Risks  |d Basel : MDPI, 2013  |g 7(2019), 4/113 vom: Dez., Seite 1-22  |h Online-Ressource  |w (DE-627)737288485  |w (DE-600)2704357-5  |w (DE-576)379467852  |x 2227-9091  |7 nnas  |a Conditional variance forecasts for long-term stock returns 
773 1 8 |g volume:7  |g year:2019  |g number:4/113  |g month:12  |g pages:1-22  |g extent:22  |a Conditional variance forecasts for long-term stock returns 
856 4 0 |u https://doi.org/10.3390/risks7040113  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://www.mdpi.com/2227-9091/7/4/113/pdf  |x Verlag  |z kostenfrei 
856 4 0 |u http://hdl.handle.net/10419/257951  |x Resolving-System  |z kostenfrei 
856 4 2 |u https://creativecommons.org/licenses/by/4.0/  |x Verlag  |y Terms of use 
951 |a AR 
992 |a 20241216 
993 |a Article 
994 |a 2019 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM170668606  |e 110200PM170668606  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1684080657  |e 4637017297 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"22 S."}],"relHost":[{"part":{"pages":"1-22","issue":"4/113","extent":"22","text":"7(2019), 4/113 vom: Dez., Seite 1-22","volume":"7","year":"2019"},"recId":"737288485","note":["Gesehen am 18.11.14"],"language":["eng"],"origin":[{"publisherPlace":"Basel","dateIssuedKey":"2013","dateIssuedDisp":"2013-","publisher":"MDPI"}],"disp":"Conditional variance forecasts for long-term stock returnsRisks","pubHistory":["1.2013 -"],"id":{"zdb":["2704357-5"],"hdl":["10419/76697"],"eki":["737288485"],"issn":["2227-9091"]},"title":[{"subtitle":"open access journal","title":"Risks","title_sort":"Risks"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"title":[{"title_sort":"Conditional variance forecasts for long-term stock returns","title":"Conditional variance forecasts for long-term stock returns"}],"id":{"doi":["10.3390/risks7040113"],"hdl":["10419/257951"],"eki":["1684080657"]},"name":{"displayForm":["Enno Mammen, Jens Perch Nielsen, Michael Scholz and Stefan Sperlich"]},"person":[{"display":"Mammen, Enno","family":"Mammen","given":"Enno","role":"aut"},{"role":"aut","given":"Jens Perch","family":"Nielsen","display":"Nielsen, Jens Perch"},{"given":"Michael","role":"aut","display":"Scholz, Michael","family":"Scholz"},{"role":"aut","given":"Stefan","family":"Sperlich","display":"Sperlich, Stefan"}],"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"language":["eng"],"recId":"1684080657"} 
SRT |a MAMMENENNOCONDITIONA2019