Smoothing for signals with discontinuities using higher order Mumford-Shah models

Minimizing the Mumford-Shah functional is frequently used for smoothing signals or time series with discontinuities. A significant limitation of the standard Mumford-Shah model is that linear trends—and in general polynomial trends—in the data are not well preserved. This can be improved by building...

Full description

Saved in:
Bibliographic Details
Main Authors: Storath, Martin (Author) , Kiefer, Lukas (Author) , Weinmann, Andreas (Author)
Format: Article (Journal)
Language:English
Published: 4 July 2019
In: Numerische Mathematik
Year: 2019, Volume: 143, Issue: 2, Pages: 423-460
ISSN:0945-3245
DOI:10.1007/s00211-019-01052-8
Online Access:Verlag, Volltext: https://doi.org/10.1007/s00211-019-01052-8
Get full text
Author Notes:Martin Storath, Lukas Kiefer, Andreas Weinmann

MARC

LEADER 00000caa a2200000 c 4500
001 1684923158
003 DE-627
005 20220817180614.0
007 cr uuu---uuuuu
008 191210s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00211-019-01052-8  |2 doi 
035 |a (DE-627)1684923158 
035 |a (DE-599)KXP1684923158 
035 |a (OCoLC)1341280813 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Storath, Martin  |e VerfasserIn  |0 (DE-588)1036903818  |0 (DE-627)751410578  |0 (DE-576)389559830  |4 aut 
245 1 0 |a Smoothing for signals with discontinuities using higher order Mumford-Shah models  |c Martin Storath, Lukas Kiefer, Andreas Weinmann 
264 1 |c 4 July 2019 
300 |a 38 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.12.2019 
520 |a Minimizing the Mumford-Shah functional is frequently used for smoothing signals or time series with discontinuities. A significant limitation of the standard Mumford-Shah model is that linear trends—and in general polynomial trends—in the data are not well preserved. This can be improved by building on splines of higher order which leads to higher order Mumford-Shah models. In this work, we study these models in the univariate situation: we discuss important differences to the first order Mumford-Shah model, and we obtain uniqueness results for their solutions. As a main contribution, we derive fast minimization algorithms for Mumford-Shah models of arbitrary orders. We show that the worst case complexity of all proposed schemes is quadratic in the length of the signal. Remarkably, they thus achieve the worst case complexity of the fastest solver for the piecewise constant Mumford-Shah model (which is the simplest model of the class). Further, we obtain stability results for the proposed algorithms. We complement these results with a numerical study. Our reference implementation processes signals with more than 10,000 elements in less than 1 s. 
650 4 |a 62G08 
650 4 |a 65D07 
650 4 |a 65D10 
650 4 |a 65K05 
650 4 |a 65K10 
700 1 |a Kiefer, Lukas  |d 1989-  |e VerfasserIn  |0 (DE-588)1154509397  |0 (DE-627)1015797318  |0 (DE-576)501049398  |4 aut 
700 1 |a Weinmann, Andreas  |e VerfasserIn  |0 (DE-588)1023236079  |0 (DE-627)717725316  |0 (DE-576)366549634  |4 aut 
773 0 8 |i Enthalten in  |t Numerische Mathematik  |d Berlin : Springer, 1959  |g 143(2019), 2, Seite 423-460  |h Online-Ressource  |w (DE-627)225690438  |w (DE-600)1364300-9  |w (DE-576)074528831  |x 0945-3245  |7 nnas  |a Smoothing for signals with discontinuities using higher order Mumford-Shah models 
773 1 8 |g volume:143  |g year:2019  |g number:2  |g pages:423-460  |g extent:38  |a Smoothing for signals with discontinuities using higher order Mumford-Shah models 
856 4 0 |u https://doi.org/10.1007/s00211-019-01052-8  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20191210 
993 |a Article 
994 |a 2019 
998 |g 1154509397  |a Kiefer, Lukas  |m 1154509397:Kiefer, Lukas  |d 700000  |d 708070  |e 700000PK1154509397  |e 708070PK1154509397  |k 0/700000/  |k 1/700000/708070/  |p 2 
998 |g 1036903818  |a Storath, Martin  |m 1036903818:Storath, Martin  |d 700000  |d 708000  |e 700000PS1036903818  |e 708000PS1036903818  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1684923158  |e 3562793189 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1684923158","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 10.12.2019"],"title":[{"title":"Smoothing for signals with discontinuities using higher order Mumford-Shah models","title_sort":"Smoothing for signals with discontinuities using higher order Mumford-Shah models"}],"person":[{"display":"Storath, Martin","roleDisplay":"VerfasserIn","role":"aut","family":"Storath","given":"Martin"},{"given":"Lukas","family":"Kiefer","role":"aut","display":"Kiefer, Lukas","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Weinmann, Andreas","role":"aut","family":"Weinmann","given":"Andreas"}],"relHost":[{"origin":[{"dateIssuedDisp":"1959-","publisher":"Springer ; Springer","dateIssuedKey":"1959","publisherPlace":"Berlin ; Heidelberg ; Berlin ; Heidelberg [u.a.]"}],"id":{"issn":["0945-3245"],"zdb":["1364300-9"],"eki":["225690438"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Numerische Mathematik","title_sort":"Numerische Mathematik"}],"note":["Gesehen am 06.05.2022"],"disp":"Smoothing for signals with discontinuities using higher order Mumford-Shah modelsNumerische Mathematik","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"225690438","pubHistory":["1.1959 -"],"part":{"extent":"38","text":"143(2019), 2, Seite 423-460","volume":"143","issue":"2","pages":"423-460","year":"2019"}}],"physDesc":[{"extent":"38 S."}],"id":{"doi":["10.1007/s00211-019-01052-8"],"eki":["1684923158"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"4 July 2019"}],"name":{"displayForm":["Martin Storath, Lukas Kiefer, Andreas Weinmann"]}} 
SRT |a STORATHMARSMOOTHINGF4201