High-efficiency dielectrophoretic ratchet

Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Germs, Wijnand Chr. (VerfasserIn) , Roeling, Erik M. (VerfasserIn) , Ijzendoorn, Leo J. van (VerfasserIn) , Smalbrugge, Barry (VerfasserIn) , Vries, Tjibbe de (VerfasserIn) , Geluk, Erik Jan (VerfasserIn) , Janssen, René A. J. (VerfasserIn) , Kemerink, Martijn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 October 2012
In: Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2012, Jahrgang: 86, Heft: 4 Pt 1
ISSN:1550-2376
DOI:10.1103/PhysRevE.86.041106
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevE.86.041106
Volltext
Verfasserangaben:Wijnand Chr. Germs, Erik M. Roeling, Leo J. van Ijzendoorn, Barry Smalbrugge, Tjibbe de Vries, Erik Jan Geluk, René A.J. Janssen, and Martijn Kemerink
Beschreibung
Zusammenfassung:Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is high-selectivity fractionation of particle or molecule distributions. Here, we investigate the functioning of an important model system, the on/off ratchet for water-suspended particles, in which interdigitated finger electrodes can be switched on and off to create a time-dependent, spatially periodic but asymmetric potential. Surprisingly, we find that mainly dielectrophoretic rather than electrophoretic forces are responsible for the ratchet effect. This has major implications for the (a)symmetry of the ratchet potential and the settings needed for optimal performance. We demonstrate that by applying a potential offset the ratchet can be optimized such that its particle displacement efficiency reaches the theoretical upper limit corresponding to the electrode geometry and particle size. Efficient fractionation based on size selectivity is therefore not only possible for charged species, but also for uncharged ones, which greatly expands the applicability range of this type of Brownian ratchet.
Beschreibung:Gesehen am 17.12.2019
Beschreibung:Online Resource
ISSN:1550-2376
DOI:10.1103/PhysRevE.86.041106