A global genetic interaction network maps a wiring diagram of cellular function

Structured Abstract - INTRODUCTIONGenetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Costanzo, Michael (VerfasserIn) , Boutros, Michael (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 Septmeber 2016
In: Science
Year: 2016, Jahrgang: 353, Heft: 6306
ISSN:1095-9203
DOI:10.1126/science.aaf1420
Online-Zugang:Verlag, Volltext: https://doi.org/10.1126/science.aaf1420
Verlag: https://science.sciencemag.org/content/353/6306/aaf1420
Volltext
Verfasserangaben:Michael Costanzo, Benjamin VanderSluis, Elizabeth N. Koch, Anastasia Baryshnikova, Carles Pons, Guihong Tan, Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee, Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen, Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski, Tharan Srikumar, Sondra Bahr, Yiqun Chen, Raamesh Deshpande, Christoph F. Kurat, Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe, Bryan-Joseph San Luis, Sara Sharifpoor, Emira Shuteriqi, Scott W. Simpkins, Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin, Vuk Janjic, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya, Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore, Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers, Brenda Andrews, Charles Boone

MARC

LEADER 00000caa a2200000 c 4500
001 1685945309
003 DE-627
005 20220817194127.0
007 cr uuu---uuuuu
008 191218s2016 xx |||||o 00| ||eng c
024 7 |a 10.1126/science.aaf1420  |2 doi 
035 |a (DE-627)1685945309 
035 |a (DE-599)KXP1685945309 
035 |a (OCoLC)1341286591 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Costanzo, Michael  |e VerfasserIn  |0 (DE-588)1201779545  |0 (DE-627)1685945139  |4 aut 
245 1 2 |a A global genetic interaction network maps a wiring diagram of cellular function  |c Michael Costanzo, Benjamin VanderSluis, Elizabeth N. Koch, Anastasia Baryshnikova, Carles Pons, Guihong Tan, Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee, Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen, Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski, Tharan Srikumar, Sondra Bahr, Yiqun Chen, Raamesh Deshpande, Christoph F. Kurat, Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe, Bryan-Joseph San Luis, Sara Sharifpoor, Emira Shuteriqi, Scott W. Simpkins, Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin, Vuk Janjic, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya, Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore, Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers, Brenda Andrews, Charles Boone 
264 1 |c 23 Septmeber 2016 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.12.2019 
520 |a Structured Abstract - INTRODUCTIONGenetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. - RATIONALEGenome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. - RESULTSWe tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. - CONCLUSIONA global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships. <img class="fragment-image" aria-describedby="F1-caption" src="https://science.sciencemag.org/content/sci/353/6306/aaf1420/F1.medium.gif"/> Download high-res image Open in new tab Download Powerpoint A global network of genetic interaction profile similarities.(Left) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial analysis of functional enrichment was used to identify and color network regions enriched for similar Gene Ontology bioprocess terms. - We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. 
700 1 |a Boutros, Michael  |e VerfasserIn  |0 (DE-588)1023031132  |0 (DE-627)717350045  |0 (DE-576)366291831  |4 aut 
773 0 8 |i Enthalten in  |t Science  |d Washington, DC : American Association for the Advancement of Science, 1880  |g 353(2016,6306) Artikel-Nummer aaf1420, 16 Seiten  |h Online-Ressource  |w (DE-627)341342882  |w (DE-600)2066996-3  |w (DE-576)099426773  |x 1095-9203  |7 nnas  |a A global genetic interaction network maps a wiring diagram of cellular function 
773 1 8 |g volume:353  |g year:2016  |g number:6306  |g extent:16  |a A global genetic interaction network maps a wiring diagram of cellular function 
856 4 0 |u https://doi.org/10.1126/science.aaf1420  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://science.sciencemag.org/content/353/6306/aaf1420  |x Verlag 
951 |a AR 
992 |a 20191218 
993 |a Article 
994 |a 2016 
998 |g 1023031132  |a Boutros, Michael  |m 1023031132:Boutros, Michael  |d 60000  |e 60000PB1023031132  |k 0/60000/  |p 47 
999 |a KXP-PPN1685945309  |e 3566724130 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1685945309","physDesc":[{"extent":"16 S."}],"relHost":[{"name":{"displayForm":["AAAS"]},"pubHistory":["1.1880 - 3.1882; 1.1883 - 23.1894; N.S. 1.1895 -"],"titleAlt":[{"title":"Science / Magazine"},{"title":"Science classic"},{"title":"Science classic archiv 1880 - 1996"},{"title":"Science magazine"}],"corporate":[{"display":"American Association for the Advancement of Science","role":"isb"}],"id":{"zdb":["2066996-3"],"issn":["1095-9203"],"eki":["341342882"]},"part":{"year":"2016","issue":"6306","text":"353(2016,6306) Artikel-Nummer aaf1420, 16 Seiten","volume":"353","extent":"16"},"recId":"341342882","physDesc":[{"extent":"Online-Ressource"}],"disp":"A global genetic interaction network maps a wiring diagram of cellular functionScience","origin":[{"publisher":"American Association for the Advancement of Science","dateIssuedKey":"1880","dateIssuedDisp":"1880-","publisherPlace":"Washington, DC"}],"title":[{"title":"Science","title_sort":"Science"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 14.07.2023"]}],"person":[{"display":"Costanzo, Michael","family":"Costanzo","role":"aut","given":"Michael"},{"family":"Boutros","given":"Michael","role":"aut","display":"Boutros, Michael"}],"origin":[{"dateIssuedDisp":"23 Septmeber 2016","dateIssuedKey":"2016"}],"title":[{"title_sort":"global genetic interaction network maps a wiring diagram of cellular function","title":"A global genetic interaction network maps a wiring diagram of cellular function"}],"note":["Gesehen am 18.12.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Michael Costanzo, Benjamin VanderSluis, Elizabeth N. Koch, Anastasia Baryshnikova, Carles Pons, Guihong Tan, Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee, Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen, Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski, Tharan Srikumar, Sondra Bahr, Yiqun Chen, Raamesh Deshpande, Christoph F. Kurat, Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe, Bryan-Joseph San Luis, Sara Sharifpoor, Emira Shuteriqi, Scott W. Simpkins, Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin, Vuk Janjic, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya, Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore, Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers, Brenda Andrews, Charles Boone"]},"id":{"eki":["1685945309"],"doi":["10.1126/science.aaf1420"]}} 
SRT |a COSTANZOMIGLOBALGENE2320