Velocity field estimation on density-driven solute transport with a convolutional neural network

Recent advances in machine learning open new opportunities to gain deeper insight into hydrological systems, where some relevant system quantities remain difficult to measure. We use deep learning methods trained on numerical simulations of the physical processes to explore the possibilities of clos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreyenberg, Philipp J. (VerfasserIn) , Bauser, Hannes (VerfasserIn) , Roth, Kurt (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 Aug 2019
In: Water resources research
Year: 2019, Jahrgang: 55, Heft: 8, Pages: 7275-7293
ISSN:1944-7973
DOI:10.1029/2019WR024833
Online-Zugang:Verlag, Volltext: https://doi.org/10.1029/2019WR024833
Verlag, Volltext: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024833
Volltext
Verfasserangaben:Philipp J. Kreyenberg, Hannes H. Bauser, and Kurt Roth

MARC

LEADER 00000caa a2200000 c 4500
001 1686376871
003 DE-627
005 20210819114317.0
007 cr uuu---uuuuu
008 200102s2019 xx |||||o 00| ||eng c
024 7 |a 10.1029/2019WR024833  |2 doi 
035 |a (DE-627)1686376871 
035 |a (DE-599)KXP1686376871 
035 |a (OCoLC)1264283456 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Kreyenberg, Philipp J.  |d 1988-  |e VerfasserIn  |0 (DE-588)1186727357  |0 (DE-627)1665998954  |4 aut 
245 1 0 |a Velocity field estimation on density-driven solute transport with a convolutional neural network  |c Philipp J. Kreyenberg, Hannes H. Bauser, and Kurt Roth 
264 1 |c 29 Aug 2019 
300 |b Illustrationen 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.01.2019 
520 |a Recent advances in machine learning open new opportunities to gain deeper insight into hydrological systems, where some relevant system quantities remain difficult to measure. We use deep learning methods trained on numerical simulations of the physical processes to explore the possibilities of closing the information gap of missing system quantities. As an illustrative example we study the estimation of velocity fields in numerical and laboratory experiments of density-driven solute transport. Using high-resolution observations of the solute concentration distribution, we demonstrate the capability of the method to structurally incorporate the representation of the physical processes. Velocity field estimation for synthetic data for both variable and uniform concentration boundary conditions showed equal results. This capability is remarkable because only the latter was employed for training the network. Applying the method to measured concentration distributions of density-driven solute transport in a Hele-Shaw cell makes the velocity field assessable in the experiment. This assessability of the velocity field even holds for regions with negligible solute concentration between the density fingers, where the velocity field is otherwise inaccessible. 
650 4 |a convolutional neural network 
650 4 |a density-driven active solute transport 
650 4 |a Hele-Shaw cell experiment 
650 4 |a velocity field estimation 
700 1 |a Bauser, Hannes  |e VerfasserIn  |0 (DE-588)1161494162  |0 (DE-627)102479329X  |0 (DE-576)506584143  |4 aut 
700 1 |a Roth, Kurt  |d 1955-  |e VerfasserIn  |0 (DE-588)1051689708  |0 (DE-627)786591668  |0 (DE-576)407255893  |4 aut 
773 0 8 |i Enthalten in  |t Water resources research  |d [New York] : Wiley, 1965  |g 55(2019), 8, Seite 7275-7293  |h Online-Ressource  |w (DE-627)324657587  |w (DE-600)2029553-4  |w (DE-576)111315778  |x 1944-7973  |7 nnas  |a Velocity field estimation on density-driven solute transport with a convolutional neural network 
773 1 8 |g volume:55  |g year:2019  |g number:8  |g pages:7275-7293  |g extent:19  |a Velocity field estimation on density-driven solute transport with a convolutional neural network 
856 4 0 |u https://doi.org/10.1029/2019WR024833  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024833  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20200102 
993 |a Article 
994 |a 2019 
998 |g 1051689708  |a Roth, Kurt  |m 1051689708:Roth, Kurt  |d 130000  |d 130500  |e 130000PR1051689708  |e 130500PR1051689708  |k 0/130000/  |k 1/130000/130500/  |p 3  |y j 
998 |g 1161494162  |a Bauser, Hannes  |m 1161494162:Bauser, Hannes  |d 130000  |d 130500  |e 130000PB1161494162  |e 130500PB1161494162  |k 0/130000/  |k 1/130000/130500/  |p 2 
998 |g 1186727357  |a Kreyenberg, Philipp J.  |m 1186727357:Kreyenberg, Philipp J.  |d 130000  |d 130500  |e 130000PK1186727357  |e 130500PK1186727357  |k 0/130000/  |k 1/130000/130500/  |p 1  |x j 
999 |a KXP-PPN1686376871  |e 3571578430 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Velocity field estimation on density-driven solute transport with a convolutional neural network","title_sort":"Velocity field estimation on density-driven solute transport with a convolutional neural network"}],"person":[{"display":"Kreyenberg, Philipp J.","family":"Kreyenberg","given":"Philipp J.","role":"aut"},{"display":"Bauser, Hannes","family":"Bauser","role":"aut","given":"Hannes"},{"given":"Kurt","role":"aut","family":"Roth","display":"Roth, Kurt"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"noteIll":"Illustrationen","extent":"19 S."}],"language":["eng"],"origin":[{"dateIssuedDisp":"29 Aug 2019","dateIssuedKey":"2019"}],"id":{"eki":["1686376871"],"doi":["10.1029/2019WR024833"]},"recId":"1686376871","name":{"displayForm":["Philipp J. Kreyenberg, Hannes H. Bauser, and Kurt Roth"]},"note":["Gesehen am 02.01.2019"],"relHost":[{"part":{"extent":"19","text":"55(2019), 8, Seite 7275-7293","volume":"55","pages":"7275-7293","year":"2019","issue":"8"},"note":["Gesehen am 19.01.2026"],"titleAlt":[{"title":"Water resources research online"},{"title":"WRR"}],"pubHistory":["1.1965 -"],"name":{"displayForm":["American Geophysical Union"]},"recId":"324657587","disp":"Velocity field estimation on density-driven solute transport with a convolutional neural networkWater resources research","id":{"doi":["10.1002/(ISSN)1944-7973"],"zdb":["2029553-4"],"issn":["1944-7973"],"eki":["324657587"]},"origin":[{"publisher":"Wiley ; AGU","dateIssuedKey":"1965","dateIssuedDisp":"1965-","publisherPlace":"[New York] ; Washington, DC"}],"corporate":[{"display":"American Geophysical Union","role":"isb"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"subtitle":"WRR","title":"Water resources research","title_sort":"Water resources research"}]}]} 
SRT |a KREYENBERGVELOCITYFI2920